• Title/Summary/Keyword: Building equipment system

Search Result 599, Processing Time 0.029 seconds

LIFT CYCLE PREDICTION METHOD FOR THE SELECTION OF LIFT EQUIPMENT IN SUPER TALL BUILDING CONSTRUCTION

  • Seo-kyung Won;Choong-hee Han;Junbok Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.153-160
    • /
    • 2009
  • The demand for super tall building construction is increasing worldwide. There has been a constant request for achieving early payback on investment by shortening the construction time. This pertains especially for the case of huge investment projects such as super tall building construction. It is very important to shorten the construction time for the building framework, which requires substantial construction time and cost, and this is directly related to the establishment of an optimum lift plan for construction. When there is a problem in the selection of the lift equipment, it is almost impossible to revise the selection, resulting in a possible failure of the project. Thus, the purpose of this study is to analyze the function and logic for the development of the process for the selection of lift equipment for super tall building projects and further development of making the analyzed process into a system. In line with this research objective, the process of selecting the optimum lift equipment by domestic construction company was investigated and analyzed as well as collecting the actual field data. The actual data were obtained by sensors installed on tower cranes at three construction sites with the help from the construction company.

  • PDF

Real Time Near Optimal Control Application Strategy for Heat Source and HVAC System (열원 및 공조설비 통합 최적제어기법 구현에 관한 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.60-65
    • /
    • 2008
  • The near-optimal control algorithm for central cooling and heating system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled or hot water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling and heating control system.

  • PDF

Real Time Near Optimal Control Application Strategy of Central Cooling System (중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Joo, Yong-Duk;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

Application of Load by Purpose of Buildings for Application of Seawater District Cooling and Heating System in Jeju Area (제주 지역의 해수열원 지역냉난방 시스템 적용을 위한 건축물 용도별 냉난방 부하량 분석 및 적용방안)

  • Park, Jin-Young;Park, Jea-Hong;Kim, Sam-Uel;Chang, Ki-Chang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-90
    • /
    • 2014
  • It is important to select an optimal capacity for equipment, because the initial cost of new and renewable energy system is more expensive than that of exiting system. An optimal equipment and enhanced rate of operation can be selected, to analyze the cooling and heating load of buildings. In this study, seawater heat pump system in the Jeju area will be applied, by the heat source equipment of district heating. The loads of buildings are analyzed from existing researches, to select optimal capacity of equipment. Also, an optimal rate of building use will be set up, from a combination of buildings.

A Study on the Microbial Contaminant Transport and Control Method According to Government Building Bio- Attack (청사 건물의 Bio-Attack에 따른 미생물 오염원 확산 및 제어방안에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.252-259
    • /
    • 2008
  • The purpose of this study is to estimate the movement of microbial contaminant caused by bio-attack using bio-agent such as bacillus anthracis for preventing contaminant diffusion. multizone simulation was carried out in the case of three types of bio-attack scenario in the government building. Simulation results show that severe contaminant diffusion is brought about in all cases of bio-attack scenario in one hour, though pollution boundaries have different mode according to bio-attack scenarios. Simulation results also show that immune building technology such as filter and UVGI technology gives us powerful alternatives to meet the emergent situation caused by unexpected bio-attack.

The study on the Performance of air sterilization of multistoried apartment by the multizone modeling (멀티죤 시뮬레이션에 의한 공동주택의 미생물 오염원제거 성능평가에 관한 연구)

  • Choi, Sang-Gon;Park, Kyung-Su;Yoon, Young-Soo;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.319-324
    • /
    • 2006
  • The purpose of this study Is to evaluate the efficacy of multizone simulation that enables to grasp of details about microbial contaminant problem in an multistoried apartment. We used actual indoor test data to figure up microbial contaminant level as initial value for the multizone simulation and estimated the various effects of indoor occupant infected with germs and the performance of air sterilization by using multizone simulation in substitute for infeasible experimental approach. The results show that natural ventilation make ourselves generally useful for removing indoor microbial contaminants. The results also show that the performance of air sterilization reach the maximum in the case of using mechanical ventilation and UVGI air sterilizer. The conclusion is that this multizone simulation is useful tool for actual design method for Immune building systems.

  • PDF

A Study on the Energy Improvement Plan of using Passive Design with Exterior Envelopes and Renewable Energy for Bio Safety Labotratory (외피의 Passive Design 요소와 신재생에너지를 적용한 생물안전 밀폐시설의 에너지 시스템 개선방안 연구)

  • Hwang, Ji Hyun;Bum, Do;Hong, Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.491-496
    • /
    • 2014
  • In general, the entire air supply of a bio-safety laboratory (BSL) should be exhausted on the outside to ensure bio-safety, and the air conditioning system should always be operated to maintain a difference in the room pressure. As a result, the annual energy consumption of such a building is approximately five or ten times higher than that of an office building of the same magnitude. Thus, this study applies an actual operating system that targets BSL. The energy consumption is analyzed using the Energy Plus V8.0 program (an energy analysis program), and five kinds of cases that depend on the energy consumption of the basic BSL system are also analyzed. As a result, the energy consumption in Case 1 (basic system) is of 324.95 GJ. When the basic system of Case 1 is compared to that in Case 2 (basic system+passive design with exterior envelopes), an annual energy savings of is 6.9% is achieved. For Case 3 (basic system+Photovoltaic, PV) 12.7% is achieved, and for Case 4 (Solar Geothermal Hybrid System of renewable energy, SGHS) 49.5% is achieved. If a passive design with exterior envelopes and renewable energy system (PV+SGHS) is combined, as in Case 5, the energy consumption would be 118.15 GJ. Therefore, when this last system is compared to a basic system, the passive design with exterior envelopes and renewable energy system (PV+SGHS) can reduce energy consumption by 63.6%.

Development of Determination System for Optimal Combination of Earthwork Equipments (토공사를 위한 건설장비 투입 최적 조합 산정 시스템 개발)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.957-969
    • /
    • 2020
  • The primary objective of this study is to develop a determination system for an optimal combination of earthwork equipment that improves the traditional way in convenience, prediction accuracy, and productivity. For this, the following research works are conducted sequentially; 1)literature review, 2)technology development trend analysis, 3)develop a determination system for the optimal combination of earthwork equipment, 4)simulation of a developed system. As a result, core considerations are deducted for the development of a determination system. Furthermore, site simulation is performed using a developed system. Site simulation result, Cluster 1(R1200LC 7㎥, CAT 775G 65ton×2) was selected from 6 clusters because of its production cost (₩491/㎥). It is expected that the application range and impact on the construction industry will be enormous due to the availability of the developed system.

A Study on Grounding Technology for the Reduction of Electric Surge in IBS Building (IBS 빌딩에서의 서어지 저감을 위한 접지방안 연구)

  • 박중양;김학련;최규형
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.87-92
    • /
    • 2003
  • According to the realization of highly information dependent society, the recent building system is developed into the concept of suitable for management of intellegent work, which is demanded to unify of IBS(Intelligent Building System), IC(information communication), OA(office automation), BA(building automation) system and computer technology. However inspite of the presence arrester, cable shielding, insulated TR, filter, earth etc., in the IBS building for the cope with several surge and noise has several problems from the wrong operation of the equipment which caused from several surge, damage of equipment, and noise etc. And the miss operation caused by wrong earth works, which must be considered at first during the building construction. In order to minimize these problems, it's necessary that various earth project are performed effectively, and bonding methods between the mutual wiring of earth system and the equipments in the building should be improved sucessively. So in this paper, we analyze present domestic conditions of the earth technology in IBS building, and propose minimization method for the various surge and noise problem, and examine and analyze through the applied works.

  • PDF