• 제목/요약/키워드: Building envelope design

검색결과 88건 처리시간 0.025초

비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발 (Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design)

  • 홍성문;김대성;김민철;김주형
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

비정형구조의 3차원 좌표제어를 위한 CNC Twisted Tube 공법 적용 -대구 대표물문화관(The ARC)를 중심으로- (CNC Twisted Tube Method for 3D Coordinate Control Technology for Freeform Structure -Focused on The ARC in DaeGu-)

  • 류한국;김성진
    • 한국건축시공학회지
    • /
    • 제13권5호
    • /
    • pp.434-440
    • /
    • 2013
  • 최근 건축은 정형의 건축물의 외관과 설계 범위를 벗어난 비정형의 설계, 시각화, 3차원 모델 구현이 이루어지고 있다. 일반 정형건축물과는 달리 비정형건축물의 지붕과 외벽은 디자인 중심의 외벽시스템과 배수, 방수의 성능을 지닌 지붕마감시스템으로 설계되고 시공되었다. 그러나 비정형 건축물은 외벽과 지붕의 구분이 없어지고 외피로의 개념으로 통합된다. 또한 건축설계의 디자인 트렌드가 정형에서 비정형의 자유로운 형태로 급변하고 있어 각종 현상설계 및 턴키 등 설계경기의 당선을 위하여 비정형의 건축물이 자주 등장하고 있다. 기존 비정형 건축구조물의 곡면외피를 시공하기 위해서는 스틸 각파이프나 C형강으로 비정형 형태를 만들고 거기에 외장을 시공한다. 그러나 이는 공사 기간 지연과 높은 공사비용이 소요되는 문제점이 있다. 제작, 설치, 검측 후 비정형 패널의 부착 오류, 줄눈의 불일치, 곡면의 직선 시공 등의 오류가 매우 빈번히 발생하고 있다. 이에 본 연구는 3차원 좌표제어 기술의 하나인 CNC Twisted Tube 공법을 적용한 구조체의 시공과정을 면밀히 검토하여 3차원 좌표제어 기술로 비정형 건축물의 구현 방안을 제시한다.

친환경 건축의 통합설계를 위한 건축 계획적 접근방법에 관한 연구 (A Study on The Architectural Plan Access Method for The Integrated Design of The Environmentally Friendly Architecture)

  • 조성현;김철규
    • 한국디지털건축인테리어학회논문집
    • /
    • 제10권3호
    • /
    • pp.79-86
    • /
    • 2010
  • From the research which sees the building which uses a natural control method with ecological architecture, continuity tried to divide the building which uses a physical control method with sustainable architecture. Ecological architecture analyzes the microclimate of the area and applies mining and natural ventilation leads and that the interior environment controls, the condition of the site actively and there is a possibility of seeing. Also sustainable architecture which is possible to lead and recycling and reuse of the resources and energy cyclic process of the construction resources to lead and the interior environment to control. Therefore the case where the facility system and structural system become integrated design organically in natural circulating method is many. Specially the sunshade system and double skin system are combined and structural system of the building and there is a possibility of having the envelope which form is feature. Today the buildings lead and the system integration process where the integral parts are systematic is demanded the interior environment which and an external form and that, they make they are there is a possibility of seeing. the environmental building which hits joins in with natural control method and the structure and facility system are integrated and has the tendency which is developed and there is a possibility of saying that a meaning with the alternative construction will be able to reduce the resources and an energy.

기후변화를 고려한 외벽 최적단열두께 검토 (Examination of the Optimal Insulation Thickness of Exterior Walls for Climate Change)

  • 정재훈
    • KIEAE Journal
    • /
    • 제11권6호
    • /
    • pp.81-86
    • /
    • 2011
  • By strengthening the insulation performance of a building, a great deal of energy can be saved and a comfortable indoor environment can be offered to people. On the other hand, the climate, which has a great influence on the indoor environment, is changed by global warming. Therefore, in planning building envelope structure and design, climate change should be considered. In this paper, the optimal insulation thickness of exterior walls was calculated by an economic assessment method using heating degree-days. Additionally, how much influence climate change has on planning building insulation was investigated. The examination showed that heating degree-days have decreased by about 10% due to climate change in the past few decades. It was also shown that the optimal insulation thickness of exterior walls was thin, at about 6%, in three representative Korean cities (Seoul, Daejeon, Jeju).

Elevator Pressurization in Tall Buildings

  • Klote, John H.
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.341-344
    • /
    • 2013
  • During a building fire, smoke can flow through elevator shafts threatening life on floors remote from the fire. Many buildings have pressurized elevators intended to prevent such smoke flow. The computer program, CONTAM, can be used to analyze the performance of pressurization smoke control systems. The design of pressurized elevators can be challenging for the following reasons: (1) often the building envelope is not capable of effectively handling the large airflow resulting from elevator pressurization, (2) open elevator doors on the ground floor tend to increase the flow from the elevator shaft at the ground floor, and (3) open exterior doors on the ground floor can cause excessive pressure differences across the elevator shaft at the ground floor. To meet these challenges, the following systems have been developed: (1) exterior vent (EV) system, (2) floor exhaust (FE) system, and ground floor lobby (GFL) system.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • 국제초고층학회논문집
    • /
    • 제6권2호
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구 (A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building)

  • 오명환;윤종호;신우철
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.

건물 냉난방수배관의 단열성능 향상을 위한 기준 연구 (A Standard Study for Improving Thermal Performance of the Hot and Cold Water Pipe Insulation in Buildings)

  • 최승혁;김유승;윤희원;류형규
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.21-30
    • /
    • 2017
  • Recently, It has increased the importance of building energy saving. Pipe insulation as well as building envelope insulation is to improve energy efficiency and reduce the energy loss. However, there continues to use the old standard for pipe insulation that is one of the most important elements in energy savings in buildings. The purpose of this study is to propose suitable pipe insulation thickness for reducing building energy use. The study also reviews pipe insulation thickness standard in accordance to Korea standard, ASHRAE 90.1 and BS5422 and analyzed through thermal simulation. As a result, it is necessary to apply the performance design method of the pipe insulation thickness to reduce the energy loss of the piping.

Optimal wind-induced load combinations for structural design of tall buildings

  • Chan, C.M.;Ding, F.;Tse, K.T.;Huang, M.F.;Shum, K.M.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.323-337
    • /
    • 2019
  • Wind tunnel testing technique has been established as a powerful experimental method for predicting wind-induced loads on high-rise buildings. Accurate assessment of the design wind load combinations for tall buildings on the basis of wind tunnel tests is an extremely important and complicated issue. The traditional design practice for determining wind load combinations relies partly on subjective judgments and lacks a systematic and reliable method of evaluating critical load cases. This paper presents a novel optimization-based framework for determining wind tunnel derived load cases for the structural design of wind sensitive tall buildings. The peak factor is used to predict the expected maximum resultant responses from the correlated three-dimensional wind loads measured at each wind angle. An optimized convex hull is further developed to serve as the design envelope in which the peak values of the resultant responses at any azimuth angle are enclosed to represent the critical wind load cases. Furthermore, the appropriate number of load cases used for design purposes can be predicted based on a set of Pareto solutions. One 30-story building example is used to illustrate the effectiveness and practical application of the proposed optimization-based technique for the evaluation of peak resultant wind-induced load cases.