• Title/Summary/Keyword: Building damage

Search Result 1,559, Processing Time 0.024 seconds

The Countermeasure which reduces the Noise and Vibration of the building Elevator (건축물(建築物) Elevator의 소음진동(騷音振動) 저감(低減) 방안(方案))

  • Jeon, Euy-Sik;Cho, Byoung-Hoo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.5 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • The interest about noise and vibration which occurs in buildings is increasing by a living level elevation recently. Particularly, the vibration which occurs from the elevator cage of the building is possibility of damage to the users of the building continuously. So, the purpose of this study is a placeThe interest about noise and vibration which occurs in buildings is increasing by a living level elevation recently. Particularly, the noise and vibration which occurs from the elevator of the building is possibility of damage to the users of the building continuously. So, the objective of this research is to investigate the noise and vibration of the elevator and propose the method which reduces of it gained thorough this study.

  • PDF

Influence Factors Suggestion and Prediction Model Development of Regional Building Damage Costs according to Typhoon (태풍에 따른 지역별 건물피해액에 영향을 미치는 요인 도출 및 피해 예측모델 개발)

  • Kim, Ji-myung;Kim, Boo-Young;Yang, Seongpil;Oh, Jeongill;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.515-525
    • /
    • 2015
  • Currently, according to the climate change, serious damage by typhoon has been occurred in the world. In this respect, the research on the prediction model to minimize the damage from various natural disaster has been conducted in several developed countries. In the case of U.S, various models to predict building damage costs have been used widely in many organizations such as insurance companies and governments. In South Korea, although studies regarding damage prediction model according to typhoon have been conducted, the scope has been only limited to consider the property of typhoon. However, it is necessary to consider various factors such as typhoon information, geography, construction environment, and socio-economy factors to predict the damages. Therefore, to address this issue, first, correlation analysis is conducted between various variables based on the data of typhoon from 2003 to 2012. Second, the damage prediction model by using regression analysis is developed based on suggested influence factors. The findings of this study can be utilized to develop the model for predicting the damage costs of buildings by typhoon like HAZUS-MH of US.

Risk Of Buildings Damage Due To Subsidence During Tunnelling Under The Buildings In Sand-Gravel Layer (빌딩하부 모래자갈층에서 터널시공 중 발생한 지표침하에 의한 빌딩의 손상)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.383-396
    • /
    • 2015
  • It is analyzed the risk of building damage due to ground surface subsidence occurred during constructing a tunnel below buildings in sand-gravel layer. The overburden and the thickness of sand-gravel layer is about 20m and the width and the height of the tunnel are 12m and 8.6m, respectively. The tunnel is pre-reinforced by umbrella method with three rows of long steel pipes and grouting. Surface subsidence is measured at 36 points surrounding buildings and measured data are used to calculate optimized three dimensional subsidence surface. Depending on the building location, deflection ratio and horizontal strain are calculated to evaluate the risk of building damage. No damage occurs at the buildings because of both the small deflection ratios involved 1~4mm subsidence and compressive horizontal strains.

A Case Study of Building Damage Risk Assessment Due to the Strutted Excavation: Design Aspects (지보굴착에 따르는 인접건물의 손상위험도 평가사례: 설계단계)

  • Lee Sun-Jae;Song Tae-Won;Lee Youn-Sang;Song Young-Han;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.99-112
    • /
    • 2005
  • The ground excavation in the urban area induces in general ground movement and subsequent damage on the adjacent building structures. So the essentials in the designing stage are the prediction of ground movement induced by the ground excavation and the damage risk assessment of buildings adjacent to the excavation. A propsed prediction method of the ground movement induced by the strutted excavation has been studied with due consideration of the existing ground movement prediction methods. A building damage risk assessment method based on the angular distortion and the horizontal strain derived from the green-field ground movement is also proposed. These methods have been applied successfully in the on-going deep excavation project in Singapore.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Regional Seismic Risk Assessment for Structural Damage to Buildings in Korea (국내 건축물 지진피해 위험도의 지역단위 평가)

  • Ahn, Sook-Jin;Park, Ji-Hun;Kim, Hye-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.265-273
    • /
    • 2023
  • This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.

Full-scale simulation of wind-driven rain and a case study to determine the rain mitigation effect of shutters

  • Krishna Sai Vutukuru;James Erwin;Arindam Gan Chowdhury
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.171-191
    • /
    • 2024
  • Wind Driven Rain (WDR) poses a significant threat to the building environment, especially in hurricane prone regions by causing interior and content damage during tropical storms and hurricanes. The damage due to rain intrusion depends on the total amount of water that enters the building; however, owing to the use of inadequate empirical methods, the amount of water intrusion is difficult to estimate accurately. Hence, the need to achieve full-scale testing capable of realistically simulating rain intrusion is widely recognized. This paper presents results of a full-scale experimental simulation at the NHERI Wall of Wind Experimental Facility (WOW EF) aimed at obtaining realistic rain characteristics as experienced by structures during tropical storms and hurricanes. A full-scale simulation of rain in strong winds would allow testing WDR intrusion through typical building components. A study of rain intrusion through a sliding glass door is presented, which accounted for the effects of multiple wind directions, test durations and wind speeds; configurations with and without shuttering systems were also considered. The study showed that significant levels of water intrusion can occur during conditions well below current design levels. The knowledge gained through this work may enhance risk modeling pertaining to loss estimates due to WDR intrusion in buildings, and it may help quantify the potential reduction of losses due to the additional protection from shuttering systems on sliding glass doors during winds.

Hurricane vulnerability model for mid/high-rise residential buildings

  • Pita, Gonzalo L.;Pinelli, Jean-Paul;Gurley, Kurt;Weekes, Johann;Cocke, Steve;Hamid, Shahid
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.449-464
    • /
    • 2016
  • Catastrophe models appraise the natural risk of the built-infrastructure simulating the interaction of its exposure and vulnerability with a hazard. Because of unique configurations and reduced number, mid/high-rise buildings present singular challenges to the assessment of their damage vulnerability. This paper presents a novel approach to estimate the vulnerability of mid/high-rise buildings (MHB) which is used in the Florida Public Hurricane Loss Model, a catastrophe model developed for the state of Florida. The MHB vulnerability approach considers the wind pressure hazard exerted over the building's height as well as accompanying rain. The approach assesses separately the damages caused by wind, debris impact, and water intrusion on building models discretized into typical apartment units. Hurricane-induced water intrusion is predicted combining the estimates of impinging rain with breach and pre-existing building defect size estimates. Damage is aggregated apartment-by-apartment and story-by-story, and accounts for vertical water propagation. The approach enables the vulnerability modeling of regular and complex building geometries in the Florida exposure and elsewhere.

DCT and DWT based Damaged Weather Radar Image Retrieval (DCT 및 DWT 기반의 손상된 기상레이더 영상 복원 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Won;Noh, Huiseong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2017
  • Today, weather radar is used as a key tool for modern high-tech weather observations and forecasts, along with a wide variety of ground gauges and weather satellites. In this paper, we propose a frequency transform based weather radar image processing technique to improve the weather radar image damaged by beam blocking and clutter removal in order to minimize the uncertainty of the weather radar observation. In the proposed method, DCT based mean energy correction is performed to improve damage caused by beam shielding, and DWT based morphological image processing and high frequency cancellation are performed to improve damage caused by clutter removal. Experimental results show that the application of the proposed method to the damaged original weather radar image improves the quality of weather radar image adaptively to the weather echo feature around the damaged area. In addition, radar QPE calculated from the improved weather radar image was also qualitatively confirmed to be improved by the damage. In the future, we will develop quantitative evaluation scales through continuous research and develop an improved algorithm of the proposed method through numerical comparison.