• Title/Summary/Keyword: Building application

Search Result 3,367, Processing Time 0.028 seconds

Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM) (창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구)

  • Song, Young-Hak;Kim, Ki-Tae;Koo, Bo-Kyung;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

The Productivity Analysis by Slab Formwork of Structural Frame Work in Tall Building Construction (초고층 골조공사의 바닥 거푸집별 생산성 분석;기준층 3일 공정을 중심으로)

  • Kim, Tae-Hoon;Shin, Yoon-Seok;Cho, Seong-Soo;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.115-118
    • /
    • 2007
  • A tall building construction is needed to reduce the construction duration for project profitability. Reducing the cycle time of typical floor in the structural frame work which have the largest duration in the whole construction, greatly affects construction duration. Nowadays, some projects are accomplished in the 3 day cycle. In order to accomplish efficiently 3 day cycle, productivity information of similar projects is supported. Therefore, this study proposed labor productivity and application by slab formwork to construct by the 3 day cycle. In order to perform an analysis, we selected 3 cases and analyzed the labor productivity on the basis of the amount of slab forms, labors, and durations. Then, we performed the questionnaire to analyze the application by formwork of tall building construction engineers. This study will contribute to establish a reasonable scheduling in structural frame work of a new similar project.

  • PDF

Changes in the External Heat Environment of Building Evaporative Cooling Systems in Response to Climate Change (기후변화 대응 건축물 기화냉각시스템 적용에 따른 외부 열환경 변화 연구)

  • Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1261-1269
    • /
    • 2018
  • The purpose of this study was to investigate changes in the external thermal environment, following the application of evaporative cooling systems in buildings, in response to climate change. In order to verify changes in the external thermal environment, a T-test was performed on the microclimate, Thermal Comfort Index (TCI), and building surface temperature. Differences in microclimate, following the application of the evaporative cooling system in the building, were significant in terms of temperature and relative humidity. In particular, temperature decreased by more than 7% when the evaporative cooling system was applied. According to the results of the Thermal Comfort Index analysis, the Wet-Bulb Globe Temperature (WBGT) was below the limit of outdoor activities, indicating that outdoor activities were possible. The Universal Thermal Climate Index (UTCI) values were within the very strong heat stress range when the evaporative cooling system was not applied, When the system was applied, the UTCI values were within the strong heat stress range, indicating that they were lowered by one level. The building surface temperature decreased by ~10% or more when the evaporative cooling system was applied, compared to when it was not applied. Finally, the outside surface temperature of the building decreased by ~12% or more when the system was applied, compared to when it was not applied. We conclude that the energy saving effect of the building was significant.

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

Development of Acceleration Duability Test Method for Fireproof Spray-Applocation (옥내용 뿜칠내화피복재의 촉진내구성 시험방법 연구)

  • Kim, Dae-Hoi;Lee, Gun-Chol;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.104-105
    • /
    • 2013
  • The buildings constructed with steel structure is coated with certified fire resistive material to resist from fire. Coating materials lose their initial performances as time passes, so they need some maintenance. Fireproof spray-application also loses its performance and this performance loss of thr fireproof spray-application is very important because fire resistance of buildings depends on fireproof spray-application. So this study is to develop Acceleration durability test method of Fireproof spray-application, and use the Certification of fire resistant coating system.

  • PDF

A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building (공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구)

  • Yoon, Jong-Ho;Sim, Se-Ra;Shin, U-Cheul;Baek, Nam-Chun;Kwak, Hee-Yul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

A Study about BIM Execution Plan for Specialty Contractors at Construction Phase - focused on Specialty Contractors in Reinforced Concrete Works - (시공단계에 참여하는 전문건설업체를 위한 시공 BIM 수행계획 구축 - 철근콘크리트 업체를 중심으로 -)

  • Lee, Joo-Sung;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.5 no.3
    • /
    • pp.19-32
    • /
    • 2015
  • For decades, the productivity issue has been a primary concern for the all stake-holders who participate in domestic construction industry. Especially, between a whole life cycle of building, the construction phase's productivity problem makes or break the entire project. In this respect, the general construction company, who accept the order and construct the building(so called General Contractor), should consider various strategies, such as schedule management, cost management, quality management, inner-crew management, etc., for the productivity improvement., and almost of these management methods have been studied for a long time. But, the researches and studies about the specialty contractor, who construct the building directly in construction site were not sufficiently complete yet. This research begins as an idea which tries to apply the BIM(Building Information Modeling) into the tasks of Specialty contractors for their productivity improvement. And for the effective application of construction BIM to specialty contractors, establish of the BIM project execution plan for them, not the fragmentary adoption of BIM. Therefore, in this paper, we develop the BIM project execution plan for the reinforced concrete companies who conduct the framework construction which located on CP(Critical Path) Especially, we model the "Construction BIM Use List for the RC Work", "BIM Application Master Process" and "BIM Application Detailed Process", and general contractor who use these BIM uses list and process models can manage various specialty contractors about schedule, cost, earned value, quality, safety and environment management systematically.

Enhancing the digitization of cultural heritage: State-of-Practice

  • Nguyen, Thu Anh;Trinh, Anh Hoang;Pham, Truong-An
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1075-1084
    • /
    • 2022
  • The use of Hi-Tech in cultural heritage preservation and the promotion of cultural heritage values in general, particularly artifacts, opens new opportunities for attracting tourists while also posing a challenge due to the need to reward high-quality excursions to visitors historical and cultural values. Building Information Modeling (BIM) and Hi-Tech in new building management have been widely adopted in the construction industry; however, Historic Building Information Modeling (HBIM) is an exciting challenge in 3D modeling and building management. For those reasons, the Scan-to-HBIM approach involves generating an HBIM model for existing buildings from the point cloud data collected by Terrestrial 3D Laser Scanner integrated with Virtual Reality (VR), Augmented Reality (AR), contributes to spatial historic sites simulation for virtual experiences. Therefore, this study aims to (1) generate the application of Virtual Reality, Augmented Reality to Historic Building Information Modeling - based workflows in a case study which is a monument in the city; (2) evaluate the application of these technologies to improve awareness of visitors related to the promotion of historical values by surveying the experience before and after using this application. The findings shed light on the barriers that prevent users from utilizing technologies and problem-solving solutions. According to the survey results, after experiencing virtual tours through applications and video explanations, participant's perception of the case study improved. When combined with emerging Hi-Tech and immersive interactive games, the Historic Building Information Modeling helps increase information transmission to improve visitor awareness and promote heritage values.

  • PDF

Comparison of Domestic and International Green Building Certification Criteria for Application of Environmental Characteristics in Tall Buildings (초고층 건축물의 환경적 특성 반영을 위한 국내.외 친환경 건축물 인증제도 비교.분석)

  • Cha, Min-Soo;Kim, Tae-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.247-251
    • /
    • 2010
  • Recently due to the crisis of environment and resources, construction industry that effect a lot on nature than any other industries is essentially required to consider environmental element through the life cycle. Lots of advanced countries and Korea have already been running green building certification systems. However, GBCC(Green Building Certification Criteria) in Korea is lack of assessment criteria that apply environmental characteristics of tall building in compared with that in advanced countries. To improve the problem, we compared GBCC with LEED(Leadership in Energy and Environmental Design) through the case study. This study provides preliminary data for reflecting environmental characteristics of tall building in GBCC.

  • PDF