• Title/Summary/Keyword: Building Boundary Polygon

Search Result 7, Processing Time 0.023 seconds

Extraction and Regularization of Various Building Boundaries with Complex Shapes Utilizing Distribution Characteristics of Airborne LIDAR Points

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.547-557
    • /
    • 2011
  • This study presents an approach for extracting boundaries of various buildings, which have concave boundaries, inner yards, non-right-angled corners, and nonlinear edges. The approach comprises four steps: building point segmentation, boundary tracing, boundary grouping, and regularization. In the second and third steps, conventional algorithms are improved for more accurate boundary extraction, and in the final step, a new algorithm is presented to extract nonlinear edges. The unique characteristics of airborne light detection and ranging (LIDAR) data are considered in some steps. The performance and practicality of the presented algorithm were evaluated for buildings of various shapes, and the average omission and commission error of building polygon areas were 0.038 and 0.033, respectively.

Georeferencing for BIM and GIS Integration Using Building Boundary Polygon (BIM과 GIS 통합을 위한 건물 외곽 폴리곤 기반 Georeferencing)

  • Jwa, Yoon-Seok;Lee, Hyun-Ah;Kim, Min-Su;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.30-38
    • /
    • 2023
  • Building Information Models(BIM) provides rich geometric and attribute information throughout the entire life cycle of a building and infrastructure object, while Geographic Information System(GIS) enables the detail analysis of urban issues based on the geo-spatial information in support of decision-making. The Integration of BIM and GIS data makes it possible to create a digital twin of the land in order to effectively manage smart cities. In the perspective of integrating BIM data into GIS systems, this study performs literature reviews on georeferencing techniques and identifies limitations in carrying out the georeferencing process using attribute information associated with absolute coordinates probided by Industry Foundation Classes(IFC) as a BIM standard. To address these limitations, an automated georeferencing process is proposed as a pilot study to position a IFC model with the Local Coordinate System(LCS) in GIS environments with the Reference Coordinate System(RCS). An evaluation of the proposed approach over a BIM model demonstrates that the proposed method is expected to be a great help for automatically georeferencing complex BIM models in a GIS environment, and thus provides benefits for efficient and reliable BIM and GIS integration in practice.

Map registration of building construction plan drawing with shape matching of cadastral parcel polygon (필지 객체의 형상 정합을 이용한 건물 설계도면의 좌표 등록)

  • Huh, Yong;Yu, Kiyun;Yang, Sungchul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • This study proposed a map registration method of a building construction plan drawing with shape matching of cadastral parcel polygon. In general, the drawing contains information about a building boundary and a cadastral parcel boundary. The shape of this cadastral parcel boundary should be same as that of the corresponding parcel polygon object in the KLIS continuous cadastral map. Thus, shape matching between two parcel boundary polygons from the drawing and cadastral map could present transformation parameters. Translation and scaling amounts could be obtained by difference of centroid coordinates and area ratio of the polygons, respectively. Rotation amount could be obtained by the rotation that presents the minimum Turning function dissimilarity of the polygons. The proposed method was applied for building construction plan drawings in eAIS for an urban area in Suwon. To assess positional accuracy of map registration, building polygons in registered drawings and aerial photos were compared. According to the accuracy of the cadastral map which is the reference dataset of the proposed method, the RMSE of corresponding buildings' corners was 0.95m and 2.37m in new and old urban areas, respectively.

Extracting Building Boundary from Aerial LiDAR Points Data Using Extended χ Algorithm (항공 라이다 데이터로부터 확장 카이 알고리즘을 이용한 건물경계선 추출)

  • Cho, Hong-Beom;Lee, Kwang-Il;Choi, Hyun-Seok;Cho, Woo-Sug;Cho, Young-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • It is essential and fundamental to extract boundary information of target object via massive three-dimensional point data acquired from laser scanner. Especially extracting boundary information of manmade features such as buildings is quite important because building is one of the major components consisting complex contemporary urban area, and has artificially defined shape. In this research, extended ${\chi}$-algorithm using geometry information of point data was proposed to extract boundary information of building from three-dimensional point data consisting building. The proposed algorithm begins with composing Delaunay triangulation process for given points and removes edges satisfying specific conditions process. Additionally, to make whole boundary extraction process efficient, we used Sweep-hull algorithm for constructing Delaunay triangulation. To verify the performance of the proposed extended ${\chi}$-algorithm, we compared the proposed algorithm with Encasing Polygon Generating Algorithm and ${\alpha}$-Shape Algorithm, which had been researched in the area of feature extraction. Further, the extracted boundary information from the proposed algorithm was analysed against manually digitized building boundary in order to test accuracy of the result of extracting boundary. The experimental results showed that extended ${\chi}$-algorithm proposed in this research proved to improve the speed of extracting boundary information compared to the existing algorithm with a higher accuracy for detecting boundary information.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.

Effects of Number of Sides on Aerodynamic Characteristics of Super-Tall Buildings (단면의 변의 수가 초고층 건물의 공력특성에 미치는 영향)

  • Kim, Yong-Chul;Bandi, Eswara Kumar;Tamura, Yukio;Yoshida, Akihito;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2013
  • A series of wind tunnel tests were conducted on 7 super-tall buildings with various polygon cross-sections, including triangle, square, pentagon, hexagon, octagon, dodecagon, and circular. The primary purpose of the present study is to investigate the effect of increasing number of sides on aerodynamic characteristics for super-tall buildings. Wind tunnel tests were conducted under the turbulent boundary layers whose power-law exponent is 0.27. Fluctuating wind pressures from more than 200 pressure taps were recorded simultaneously, and time series of overturning moments were calculated considering tributary area of each pressure tap. The results show that the overturning moment coefficients and the spectral values decrease with increasing number of sides, and the largest mean and fluctuating overturning moments were found for the triangular super-tall building, and the largest spectral values were found for the square super-tall building. The analysis should be conducted more in detail, but currently it can be roughly said that there seems to be a little differences in the aerodynamic characteristics for the super-tall buildings whose number of sides is larger than 5 or 6.

A Modified Digital Elevation Modeling for Stormwater Management Planning in Segmentalized Micro-catchment Areas

  • Lee, Eun-seok
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Background and objective: Urban topology can be characterized as impervious, which changes the hydrologic features of an area, increasing surface water flow during local heavy rain events. The pluvial flooding is also influenced by the vertical structures of the urban area. This study suggested a modified digital elevation model (DEM) to identify changes in urban hydrological conditions and segmentalized urban micro catchment areas using a geographical information system (GIS). Methods: This study suggests using a modified DEM creation process based on Rolling Ball Method concepts along with a GIS program. This method proposes adding realized urban vertical data to normal DEM data and simulating hydrological analyses based on RBM concepts. The most important aspect is the combination of the DEM with polygon data, which includes urban vertical data in three datasets: the contour polyline, the locations of buildings and roads, and the elevation point data from the DEM. DEM without vertical data (DCA) were compared with the DEM including vertical data (VCA) to analyze catchment areas in Shin-wol district, Seoul, Korea. Results: The DCA had 136 catchments, and the area of each catchment ranged from 3,406 m2 to 423,449 m2. The VCA had 2,963 catchments, with the area of each ranging from 50 m2 to 16,209 m2. The most important finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Flooding data from September 21, 2010 and July 27, 2011 in the Shin-wol district were applied as ground reference data. The finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Conclusion: The analysis of the area vulnerable to surface water flooding (SWF) was more accurately determined using the VCA than using the DCA.