• Title/Summary/Keyword: Building 3D Printing

Search Result 81, Processing Time 0.028 seconds

Development of a 3D Printing System for Construction Using an Articulated Robot (다관절 로봇을 이용한 건설용 3D프린팅 출력시스템 개발)

  • Lee, Giryun;Nho, Hyunju;Jung, Namcheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.263-264
    • /
    • 2023
  • 3D printing technology is recognized as a core technology that will lead the next generation, and is a field that can have a large ripple effect if it innovates the existing construction production method. Therefore, this study deals with the development of a 3d printing system using an articulated robot for construction purposes. In this system, ABB robot was used to control the developed cement gun accurately. The system is composed of mixer to mix cementitious materials, pump to transfer the materials, abb robot to motion control and cement gun to extrude the materials to print required construction parts. Using the system developed in this study, a suitable mix ratio of cementitious materials was found and successively printed a 1m high structure that demonstrated possibility of printing structures using 3d printer. In the future, we plan to build a foundation for automated construction through research on construction methods and materials that can be continuously layered for the system.

  • PDF

Polymer meets ceramic: Polymer-driven advancement of ceramic 3D printing technology (고분자와 세라믹의 만남: 고분자를 통한 세라믹 3D 프린팅 기술의 발전)

  • Cha, Chaenyung
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.4-15
    • /
    • 2020
  • The recent advances and popularity of 3D printing technology have centered around building polymerbased 'plastic' materials, due to their low cost, simple and efficient processing, and mechanical toughness. For this reason, printable polymers are actively recruited to create 'ceramic resins' that allow more facile fabrication of ceramic materials that are difficult to print directly. Herein, a brief history and the current state of ceramic 3D printing technology aided by polymer is summarized. In addition, a new ceramic 3D printing technology using polymer-derived ceramics (PDC) is also introduced.

3D Printing : A New Industrial Revolution? (3D 프린팅 : 새로운 산업혁명인가?)

  • Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Many research or consulting institute refered to Artificial Intelligence, Internet of Things, Blockchain technology and 3D Printing as key driving forces and technologies of 4th industrial revolution. Compared with traditional manufacturing as a subtractive manufacturing(SM), 3D printing technology as an additive manufacturing(AM) will revolutionary impacts on many industries. This study compared 3D printing with traditional manufacturing in the economic, manufacturing, and marketing perspectives. This study also analyzed issues of 3D printing for the purpose of building business ecosystem. Finally agenda for the further research were suggested.

Structural Behavior Analysis of Polymer Lattice Reinforced 3D Printing Cementitious Cladding (폴리머 격자 보강재를 이용한 3D 프린팅 시멘트계 외장재의 구조 거동 분석)

  • Kim, Hak-Beom;Park, Min-Jae;Ju, Young K.
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.3-10
    • /
    • 2018
  • Cladding that finishes the exterior of a building could enhance the value of the building, and shape control is an important factor. With the recent development of 3D printing, cementitious claddings were printed by 3D printer in China, U.S.A and elsewhere. On the other hand, the structural safety of the exterior panel should be examined, as casualties occur when the exterior panel fails due to typhoon or impact. Cement-based cladding is reinforced by wire mesh to improve safety. Introducing 3D printing composite system with polymer and cement, makes it possible to produce claddings fast and accurate. Prior to the development of 3D printing cementitious cladding, the major parameters influencing the optimal shape were identified based on structural performance. The wind load, joint, and bond behavior between polymer and cement were considered. Polymer laminate shape, order, and thickness were variables, and finite element analysis was performed.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.

Study on the Connection Node System of Irregular-shaped Curtain wall Facade using 3D Printed Smart Node System (자유형상 커튼월 구현을 위한 3D 프린팅을 활용한 스마트노드 시스템의 연구)

  • Na, SangHo;Yoo, SeungKyu;Park, YoungMi;Park, JungJoon;Kim, SungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.8-9
    • /
    • 2018
  • 3D printing has the unique advantage of the ability to customize freeform product even in small quantity. However, we need to select and apply the only necessary parts of it because of the high cost of the manufacturing technology. It is of critical importance in irregular-shaped curtain walls to ensure precision of construction as well as quality fo finish. Complex shape that have structural members at varying angles can have nodes of different shapes making it unfeasible to construct using a general node connection detail. Therefore, this study aims to utilize smart node system using 3D printing as a solution to complex irregular-shaped curtain wall design.

  • PDF

Institutional Improvement of Construction-Related Laws for Practical Application of 3D Printing (3D 프린팅 실무 적용을 위한 건설 관련법 제도적 개선 방향)

  • Lee, Sung-Min;Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.85-94
    • /
    • 2019
  • Then 3D printing is used practically at construction sites, there is a serious lack of studies on the conflict with construction-related laws and expected operational problems. Accordingly, the purpose of this study is to present obstacles and directions for improvement in construction-related laws (Building Act, Construction Technology Promotion Act, Housing Act, Construction Machinery Management Act, etc.) for practical operation of 3D printing. The important results are as follows. Amending existing construction-related laws for 3D printing is irrational and inefficient in terms of structure and material. This study proposed a method of satisfying performance required by laws or standards based on the performance design method presented in existing laws and systems through structure and material performance certification procedure. In addition, inclusion of 3D printing equipment in the Construction Machinery Management Act results in various restrictions such as equipment inspection and certification of machine parts. As such restrictions can block vitalization of 3D printing, a long-term and step-wise approach was suggested.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Fire Performance of 3D Printing Wall in Simplified Heating Test (간이 내화시험에 의한 3D 프린팅 벽체의 내화 성능에 관한 연구)

  • Kibeom Ju;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.11-17
    • /
    • 2023
  • In recent construction research, the focus has primarily been on developing 3D printers and construction-specific materials. 3D printing technology in construction is growing rapidly due to its potential benefits. However, there's a notable lack of research on the fire performance of 3D Printed Concrete (3DPC) walls. This study addresses this gap by investigating how 3DPC walls respond to controlled heating conditions in a simplified test. The research aims to provide crucial insights into the behavior of 3D-printed mortar composite walls when exposed to fire. The findings have the potential to enhance safety and reliability in 3D printing technology within the construction industry. Furthermore, it could contribute to improving the fire safety standards of architectural structures and expand the use of 3D printing in future construction projects.