Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.1.02

Polymer meets ceramic: Polymer-driven advancement of ceramic 3D printing technology  

Cha, Chaenyung (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Ceramist / v.23, no.1, 2020 , pp. 4-15 More about this Journal
Abstract
The recent advances and popularity of 3D printing technology have centered around building polymerbased 'plastic' materials, due to their low cost, simple and efficient processing, and mechanical toughness. For this reason, printable polymers are actively recruited to create 'ceramic resins' that allow more facile fabrication of ceramic materials that are difficult to print directly. Herein, a brief history and the current state of ceramic 3D printing technology aided by polymer is summarized. In addition, a new ceramic 3D printing technology using polymer-derived ceramics (PDC) is also introduced.
Keywords
ceramic 3D printing; ceramic resin; polymer-derived ceramics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jafari, M. A., A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 6 [3], 161-75 (2000).   DOI
2 Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T., Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10 [6], 666 (2018).   DOI
3 Iyer, S.; McIntosh, J.; Bandyopadhyay, A.; Langrana, N.; Safari, A.; Danforth, S. C.; Clancy, R. B.; Gasdaska, C.; Whalen, P. J., Microstructural Characterization and Mechanical Properties of Si3N4 Formed by Fused Deposition of Ceramics. International Journal of Applied Ceramic Technology, 5 [2], 127-37 (2008).   DOI
4 Kodama, H., Automatic method for fabricating a three-dimensional plastic model with photohardening polymer. Rev. Sci. Instrum., 52 [11], 1770-73 (1981).   DOI
5 Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater., 29 [15], 1606000 (2017).   DOI
6 Hull, C. W. Apparatus for production of threedimensional objects by stereolithography. US 4,575,330, 1986.
7 Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y., 3D printing of ceramics: A review. J. Eur. Ceram. Soc., 39 [4], 661-87 (2019).   DOI
8 Hwa, L. C.; Rajoo, S.; Noor, A. M.; Ahmad, N.; Uday, M. B., Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci., 21 [6], 323-47 (2017).   DOI
9 Bae, C.-J.; Ramachandran, A.; Chung, K.; Park, S., Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. J. Korean Ceram. Soc, 54 [6], 470-77 (2017).   DOI
10 Marcus, H. L.; Beaman, J. J.; Barlow, J. W.; Bourell, D. L., Solid freeform fabrication. Powder processing. Am. Ceram. Soc. Bull., 69 [6], 1030-31 (1990).
11 Sachs, E.; Cima, M.; Cornie, J., Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. CIRP Annals, 39 [1], 201-04 (1990).   DOI
12 Ainger, F. W.; Herbert, J. M., The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids. Academic Press: New York, pp. 168-182 (1965).
13 Mohanty, S.; Larsen, L. B.; Trifol, J.; Szabo, P.; Burri, H. V. R.; Canali, C.; Dufva, M.; Emnéus, J.; Wolff, A., Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering: C, 55, 569-78 (2015).   DOI
14 Wen, Y.; Xun, S.; Haoye, M.; Baichuan, S.; Peng, C.; Xuejian, L.; Kaihong, Z.; Xuan, Y.; Jiang, P.; Shibi, L., 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science, 5 [9], 1690-98 (2017).   DOI
15 Eckel, Z. C.; Zhou, C.; Martin, J. H.; Jacobsen, A. J.; Carter, W. B.; Schaedler, T. A., Additive manufacturing of polymer-derived ceramics. Science, 351 [6268], 58-62 (2016).   DOI
16 Chantrell, P. G.; Popper, P., Inorganic Polymers and Ceramics. Academic Press: New York, pp. 87-103 (1965).
17 Jansen, M.; Jüngermann, H., A new class of promising ceramics based on amorphous inorganic networks. Curr. Opin. Solid State Mater. Sci., 2 [2], 150-57 (1997).   DOI
18 Brady, G. A.; Halloran, J. W., Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 3 [2], 61-65 (1997).   DOI
19 Griffith, M. L.; Halloran, J. W. In Ultraviolet curable ceramic suspensions for stereolithography of ceramics, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, pp. 529-34 (1994).
20 Griffith, M. L.; Halloran, J. W., Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc., 79 [10], 2601-08 (1996).   DOI
21 Wang, M.; Xie, C.; He, R.; Ding, G.; Zhang, K.; Wang, G.; Fang, D., Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing. J. Am. Ceram. Soc., 102 [9], 5117-26 (2019).   DOI
22 Fritz, G.; Raabe, B., Bildung siliciumorganischer Verbindungen. V. Die Thermische Zersetzung von Si(CH3)4 und Si(C2H5)4. Z. Anorg. Allg. Chem., 286 [3-4], 149-67 (1956).   DOI
23 Seishi, Y.; Josaburo, H.; Mamoru, O., Continuous silicon carbide fiber of high tensile strength. Chem. Lett., 4 [9], 931-34 (1975).   DOI
24 Riedel, R.; Passing, G.; Schonfelder, H.; Brook, R. J., Synthesis of dense silicon-based ceramics at low temperatures. Nature, 355 [6362], 714-17 (1992).   DOI
25 Liu, G.; Zhao, Y.; Wu, G.; Lu, J., Origami and 4D printing of elastomer-derived ceramic structures. Science Advances, 4 [8], eaat0641 (2018).   DOI
26 Fu, Y.; Chen, Z.; Xu, G.; Wei, Y.; Lao, C., Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics. J. Alloys Compd., 789, 867-73 (2019).   DOI
27 Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P. H.; Li, S.; Gurlo, A., Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 27, 80-90 (2019).   DOI
28 Colombo, P.; Mera, G.; Riedel, R.; Soraru, G. D., Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc., 93 [7], 1805-37 (2010).
29 Zanchetta, E.; Cattaldo, M.; Franchin, G.; Schwentenwein, M.; Homa, J.; Brusatin, G.; Colombo, P., Stereolithography of SiOC Ceramic Microcomponents. Adv. Mater., 28 [2], 370-76 (2016).   DOI
30 Badev, A.; Abouliatim, Y.; Chartier, T.; Lecamp, L.; Lebaudy, P.; Chaput, C.; Delage, C., Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. J. Photochem. Photobiol. A: Chem., 222 [1], 117-22 (2011).   DOI
31 Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A. R.; Liska, R.; Stampfl, J., Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. Adv. Eng. Mater., 14 [12], 1052-58 (2012).   DOI
32 송경은, 깨지기 쉬운 세라믹, 3D프린터로 한번에 인쇄한다. 동아사이언스 April 24, 2017.
33 Duan, B.; Wang, M.; Zhou, W. Y.; Cheung, W. L.; Li, Z. Y.; Lu, W. W., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater., 6 [12], 4495-505 (2010).   DOI
34 Guo, D.; Li, L.-t.; Cai, K.; Gui, Z.-l.; Nan, C.-w., Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting. J. Am. Ceram. Soc., 87 [1], 17-22 (2004).   DOI
35 Sing Swee, L., Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal, 23 [3], 611-23 (2017).   DOI
36 Subramanian, K., Selective laser sintering of alumina with polymer binders. Rapid Prototyping Journal, 1 [2], 24-35 (1995).   DOI
37 Tang, H.-H.; Chiu, M.-L.; Yen, H.-C., Slurrybased selective laser sintering of polymercoated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc., 31 [8], 1383-88 (2011).   DOI
38 Danforth, S., Fused Deposition of Ceramics: A New Technique for the Rapid Fabrication of Ceramic Components. Materials Technology, 10 [7-8], 144-46 (1995).   DOI