• Title/Summary/Keyword: Building 3D Printing

Search Result 81, Processing Time 0.028 seconds

A Development of Work Breakdown Structure and Link to Standard Estimation System for 3D Printing Building (건축물 3D 프린팅 공종분류체계 도출 및 표준품셈 연계방안 제시)

  • Ju, Ki-Beom;Seo, Myoung-Bae;Park, Hyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • 3D printing technology is attracting increasing attention as a key technology of the fourth industrial revolution that can change the production paradigm of existing industries. The introduction of construction 3D printing technology has been slower than other industries because of the characteristics of the construction field. On the other hand construction automation using 3D printing is required to reduce the production population, as well as improve productivity and safety. In this study, a construction 3D printing work breakdown structure and link method to a standard estimation system were developed as a preliminary preparation for introducing 3D printing to construction. Based on expert consultation on construction and 3D printing, a hypothetical scenario was developed based on existing construction 3D printing technology. According to the scenario, 16 kinds of works required for 3D printing construction work were derived. The existing work breakdown structure and standard estimation system were analyzed, and the 3D printing work was linked. 3D printing works that were the same as the existing breakdown structure were found, and non-existent works were added to the similar breakdown structure. These results are expected to be helpful for future 3D printing construction management and cost estimation. The actual standard estimation system through 3D printing work will need to be calculated.

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

An Analysis of 3D Printing Activities for Vertical Structure of Small Building (소형건축물 수직골조 대상 3D 프린팅 액티비티 분석)

  • Park, Hyeong-Jin;Ju, Gi-Beom;Seo, Myeong-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.308-309
    • /
    • 2018
  • Construction automation is needed to improve construction productivity. 3D printing is a key technology of the 4th industrial revolution, and when applied to the construction field, the ripple effect is very large. In this paper, we propose a 3D printing method that can predict the 3D printing process and estimate the construction duration for each process. Through literature review and expert consultation, eight 3D printing activities for structure work were derived. Construction duration and cost estimation for each activity will be needed in the future research.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

High Temperature Compressive Strength of Polymer Cement Composite Apply for 3D Printing Exterior Materials (시멘트 폴리머를 사용한 외장재용 결합재의 고온강도 특성)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.116-117
    • /
    • 2019
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base composite material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed high temperature strength characteristics for application as an exterior materials of buildings and confirmed its possibility.

  • PDF

The Perception of 3D Printing Technology for Adoption in Domestic Architecture Industry (국내 건축분야 3D 프린팅 기술의 실무 도입에 관한 인식)

  • Shin, Jaeyoung;Won, Jisun;Ju, Ki-Beom;Seo, Myoung-Bae;Park, Hyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.731-739
    • /
    • 2017
  • As Additive Manufacturing (AM), so-called 3D printing technology, has become visualized, its potential for Mass-Customization, production costs and time savings has extended the scope of utilization to the architecture domain. Several cases that produced facilities, building elements and components using 3D printing technology have been announced mainly on the outside. There is also the development of foundation technologies including 3D printing-specific materials and equipment in Korea. As 3D printing technology in the architecture domain is currently in the early stages of adoption, realistic and systematic strategies are needed to advance it to the commercialization stages, considering the current circumstances of the industry. With this background, this study surveyed experts to investigate the status of the perception of 3D printing technology for adoption in domestic architecture industry. 3D printing technology is expected to be commercialized in areas of irregular-shape buildings and interior markets rather than general construction area. 3D printed products expected to be commercialized are limited to the level of building elements and the aesthetic factor is regarded as the most competitive factor. To enhance the possibility of the commercialization of 3D printed products, the 3D printing-specific construction method, related policies and systems are required along with the performance and stability of the materials and equipment.

Status and Direction of Development on the 3D Printing Technology for BRP(Building Rapid Printing) (건축물 신속조형을 위한 3D 프린터 기술 현황 및 개발방향)

  • Kim, Dong-Hyun;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.61-68
    • /
    • 2015
  • A study on BRP(Building Rapid Printing) technology is in an initial stage although general 3d printers are being developed in a great speed and with fruitful outputs. Even some laboratories in advanced countries have difficulties in their research due to many technological restrictions and have not produced a practical output yet. This paper proposed distinct directions in which the research of this aera should be developed and this manifested four areas - printing speed, reinforcing tech, material tech and nozzle tech and those areas were proposed with concrete development alternatives and objects.

Application of 3D Printing Technology for Formwork Constructability Review in Tall Building Construction (초고층 거푸집 공사의 시공성 검토를 위한 3D Printing의 활용)

  • Lee, Junehyuck;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.69-70
    • /
    • 2016
  • The constructability of formwork has a significantly influence on the duration and cost in tall building construction. However, current installation and dismantling process are conducted with heuristic approaches due to the absence of reasonable constructability review method. This study proposes a new method to review the constructability of formwork by utilizing 3D printing technology. It is expected that the suggested review method could reduce formwork duration and cost with subjective, but rational manner.

  • PDF

Comparison of Mechanical Properties and Form Accuracy in FDM 3D Printing Based on Building Conditions (FDM 방식 3D 프린팅에서 제작 조건에 따른 기계적물성치와 형상정밀도의 실험적 비교)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.52-59
    • /
    • 2021
  • In this study, we experimentally evaluated the mechanical properties and geometric form accuracy in FDM 3D printing processes based on the printing direction, building direction, and layer thickness. The specimen test results showed that the tensile strength increased by over 33% in the printing direction compared to the direction perpendicular to printing and the tensile strength becomes larger as the layer thickness decreased. Furthermore, the tensile and impact strengths in the building direction were significantly reduced due to the difference in the interlayer joining and bonding strengths of the fused material. Additionally, shrinkage of the material due to phase change induced curl distortion especially in thin and long 3D-printed products, which increased as the layer thickness increased.

A Development of Work Item and Duration Estimation Method for 3D Printing based Building (건축물 3D 프린팅 공정 도출 및 공기 산정방식 개발)

  • Park, Hyung-Jin;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.200-207
    • /
    • 2017
  • 3D printing is making a huge difference to existing industries and is beginning to be applied in the field of construction. 3D printing construction differs from existing construction techniques. Therefore, new construction processes need to be developed. In particular, the accurate construction duration is linked directly to a successful project. A method for estimating the construction duration for 3D printing construction is necessary. In this study, a 3D printing construction process and duration estimation method were derived to prepare for the future introduction of 3D printing in construction. The scope of the study was assumed to be 3D printing equipment capable of pouring concrete, and limited to a frame structure construction. The developed construction period estimation method was applied to the virtual test model. As a result of applying the test model, the construction duration was shortened by approximately 50% compared to the existing construction technique. The method of estimating the construction period developed in this study can be applied to 3D printing constructions in the future and help establish a business plan.