• 제목/요약/키워드: Buckling strength

검색결과 912건 처리시간 0.019초

조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석 (Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing)

  • 김규원;김정수;강동윤;김문겸
    • 한국가스학회지
    • /
    • 제23권4호
    • /
    • pp.65-73
    • /
    • 2019
  • 스파이럴 강관은 기존 UOE 강관에 비해 경제적이며 연속적으로 강관 제작이 가능해 수송관뿐만 아니라 구조부재로 사용이 점차 확장되고 있다. 최근 제작기술의 발달로 스파이럴 강관의 고강도 및 대형화가 가능하게 됨에 따라 대규모 장거리 수송용 파이프라인에도 적용이 시도되고 있고, 이로 인해 스파이럴 강관의 구조적 건전성과 경제성 확보를 위한 변형률 기반 설계가 요구된다. 그러나 이를 뒷받침하기 위한 스파이럴 강관의 설계 기준 전반이 제시되지 않은 실정이고, 구조적 거동에 대한 명확한 규명이 이뤄지지 못하고 있다. 본 논문은 스파이럴 파이프의 조관 과정에서 발생되는 잔류응력이 스파이럴 파이프의 휨 거동에 미치는 영향을 분석하였다. 조관으로 인한 잔류응력 평가를 위해 조관 성형각, 두께, 강도를 달리하여 스파이럴 파이프의 유한요소해석을 수행하고, 해석결과를 파이프 휨 해석에 대한 초기 조건으로 반영하여 수치해석적으로 휨 거동 변화를 조사하였다.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

Compressive behavior of profiled double skin composite wall

  • Qin, Ying;Li, Yong-Wei;Su, Yu-Sen;Lan, Xu-Zhao;Wu, Yuan-De;Wang, Xiang-Yu
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.405-416
    • /
    • 2019
  • Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구 (Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder)

  • 이두성;이성철;서석구
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.457-463
    • /
    • 2008
  • 종방향 보강재는 압축플랜지를 단순지지함으로써 국부좌굴강도를 증가시키는 역할을 수행한다. 최근 연구에 의하면, 종방향으로 적절한 간격을 두고 점지지 되었을 경우 그 선을 따라서 단순 지지된 경우와 동일한 좌굴강도를 보이는 것으로 밝혀졌다. 이 같은 연구결과로부터, 하부콘크리트에 부착된 전단연결재가 압축플랜지의 좌굴시 점지지 조건을 만족할 수 있다면 전단연결재가 단순지지의 역할도 수행할 수 있을 것이라는 예측이 가능하다. 이와 같은 사실이 입증이 된다면, 강박스거더 제작비에서 매우 큰 부분을 차지하는 종방향보강재를 생략할 수 있기 때문에 보다 경제적인 설계가 가능해 질 것이다. 본 연구에서는 하부압축플랜지에 종방향보강재를 대체할 전단연결재의 종방향 배치 시 최소간격 결정과 동시에 하부 콘크리트와 합성거동을 하기 위해 소요되는 전단연결재 소요 개수와 간격을 결정하기 위한 연구를 수행하였다.

준 카고메 트러스 심재를 갖는 최적화된 샌드위치 판재의 굽힘하중 하에서의 기계적 성능 (Mechanical Performance of Near-Optimized Sandwich Panels with Quasi-Kagome Truss Cores under Bending Load)

  • 임채홍;주재황;강기주
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1025-1030
    • /
    • 2007
  • Three kinds of metallic sandwich panels with quasi-Kagome truss cores have been analyzed on their mechanical behaviors subjected to bending load. According to the results of previous work on the optimal design, they were designed to have similarly high strength per weight with the identical overall sizes, i.e., the total length, the width, the core height. Differences were in the face sheet thickness and/or the thickness of the metal sheet from which the core was fabricated through expanding and bending processes. Under the bending load, they performed well as designed, as far as the maximum load is concerned. However, after the maximum load, the load-displacement curves were different each other depending on the slenderness ratio of the truss elements composing the quasi-Kagome truss cores and the face sheet thickness. Namely, the slenderness ratio and the face sheet thickness governed stability of the elastic and plastic buckling. Therefore, if energy absorption characteristics or structural stability as well as the maximum load capacity are to be achieved, the sandwich panel with thick truss members and thick face sheet should be selected.

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

탄소섬유쉬트로 구속된 콘크리트충전 원형강관기둥의 단조압축실험 (Experimental Study on Concrete Steel Circular Tubes Confined by Carbon Fiber Sheet under Axial Compression Loads)

  • 박재우;홍영균;홍기섭;최성모
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.61-71
    • /
    • 2009
  • 본 연구에서는 기존 원형 CFT기둥 실험체와 탄소섬유쉬트로 추가구속된 원형 CFT기둥 실험체의 단조압축거동 및 압축내력평가에 관한 실험을 수행하였다. 실험변수는 탄소섬유쉬트 보강겹수와 직경-두께비이며, 실험변수에 따라 총 10개의 실험체를 제작하여 단조압축실험을 수행하였다. 실험을 통하여 기존 CFT 실험체와 탄소섬유쉬트로 구속된 CFT 실험체의 파괴거동, 하중-축변위 곡선, 최대내력, 변형성능을 비교한다. 끝으로 탄소섬유쉬트의 추가구속을 통해 기둥의 국부좌굴을 지연시켰으며 구속효과로 인해 내력은 상승하는 것으로 나타났다.