Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.4.405

Behavior of L-shaped double-skin composite walls under compression and biaxial bending  

Qin, Ying (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
Chen, Xin (School of Civil Engineering, Southeast University)
Xi, Wang (School of Civil Engineering, Southeast University)
Zhu, Xingyu (School of Civil Engineering, Southeast University)
Chen, Yuanze (School of Civil Engineering, Southeast University)
Publication Information
Steel and Composite Structures / v.37, no.4, 2020 , pp. 405-418 More about this Journal
Abstract
The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.
Keywords
composite wall; eccentric compressive loading; experimental behavior; T-shaped section; truss connector;
Citations & Related Records
Times Cited By KSCI : 36  (Citation Analysis)
연도 인용수 순위
1 Yan, J.B., Chen, A.Z. and Wang, T. (2019), "Developments of double skin composite walls using novel enhanced C-channel connectors", Steel Compos. Struct., 33(6), 877-889. https://doi.org/10.12989/scs.2019.33.6.877.   DOI
2 Yang, Y., Liu, J.B. and Fan, J.S. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. http://dx.doi.org/10.1016/j.jcsr.2016.01.019.   DOI
3 Yuksel, S.B. (2019), "Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric", Struct. Eng. Mech., 70(2), 133-141. https://doi.org/10.12989/sem.2019.70.2.133.   DOI
4 Zhou, D.Y., Liu, L.F. and Zhu, L.M. (2016), "Lateral load-carrying capacity analyses of composite shear walls with double steel plates and filled concrete with binding bars", J. Cent. South Univ., 23(8), 2083-2091. https://doi.org/10.1007/s11771-016-3264-0.   DOI
5 AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, USA.
6 Bafti, F.G., Mortezaei, A. and Kheyroddin, A. (2019), "The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions", Struct. Eng. Mech., 69(6), 651-665. https://doi.org/10.12989/sem.2019.69.6.651.   DOI
7 Bahabadi, H.M., Farrokhabadi, A. and Rahimi, G.H. (2020), "Investigation of debonding growth between composite skins and corrugated foam-composite core in sandwich panels under bending loading", Eng. Fract. Mech., 230, 106987. http://dx.doi.org/10.1016/j.engfracmech.2020.106987.   DOI
8 Beiraghi, H. (2018), "Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to nearfault earthquake", Steel Compos. Struct., 27(6), 703-716. http://dx.doi.org/10.12989/scs.2018.27.6.703.   DOI
9 CECS 159:2004 (2004), Technical specification for structures with concrete-filled rectangular steel tube members, China Association for Engineering Construction Standardization; Beijing, China.
10 Chen, L.H., Wang, S.Y., Lou, Y. and Xia, D.R. (2019), "Seismic behavior of double-skin composite wall with L-shaped and C-shaped connectors", J. Constr. Steel Res., 160, 255-270. http://dx.doi.org/10.1016/j.jcsr.2019.05.033.   DOI
11 Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Compos. Struct., 9(6), 519-534. http://dx.doi.org/10.12989/scs.2009.9.6.519.   DOI
12 Qin, Y., Shu, G.P., Zhou, G.G., Han, J.H. and Zhou, X.L. (2019d), "Truss spacing on innovative composite walls under compression", J. Constr. Steel Res., 160, 1-15. https://doi.org/10.1016/j.jcsr.2019.05.027   DOI
13 Qin, Y., Shu, G.P., Zhang, H.K. and Zhou, G.G. (2019a), "Experimental cyclic behavior of connection to double-skin composite wall with truss connector", J. Constr. Steel Res., 162, 105759. https://doi.org/10.1016/j.jcsr.2019.105759.   DOI
14 Qin, Y., Shu, G.P., Zhou, X.L., Han, J.H. and He, Y.F. (2019b), "Height-thickness ratio on axial behavior of composite wall with truss connector", Steel Compos. Struct., 30(4), 315-325. https://doi.org/10.12989/scs.2019.30.4.315   DOI
15 Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019c), "Compressive behavior of double skin composite wall with different plate thicknesses", J. Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023   DOI
16 Qin, Y., Chen, X., Zhu, X., Xi, W. and Chen, Y. (2020a), "Structural behavior of sandwich composite wall with truss connectors under compression", Steel Compos. Struct., 35(2), 159-169. https://doi.org/10.12989/scs.2020.35.2.159.   DOI
17 Qin, Y., Chen, X., Xi, W., Zhu, X.Y. and Chen, Y.Z. (2020b), "Compressive behavior of rectangular sandwich composite wall with different truss spacings", Steel Compos. Struct., 34(6), 783-794. https://doi.org/10.12989/scs.2020.34.6.783.   DOI
18 Curkovic, I., Skejic, D., Dzeba, I. and De Matteis, G. (2019b), "Seismic performance of composite plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 19-36. https://doi.org/10.12989/scs.2019.33.1.019.   DOI
19 Choi, B.J., Kang, C.K. and Park, H.Y. (2014), "Strength and behavior of steel plate-concrete wall structures using ordinary and eco-oriented cement concrete under axial compression", Thin Wall Struct., 84, 313-324. http://dx.doi.org/10.1016/j.tws.2014.07.008.   DOI
20 Curkovic, I., Skejic, D. and Dzeba, I. (2019a), "Seismic performance of steel plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 833-850. http://dx.doi.org/10.12989/scs.2019.33.1.833.
21 Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. http://dx.doi.org/10.12989/scs.2019.32.3.347.   DOI
22 Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J.Z. and Singh, A. (2020a), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, 110448. http://dx.doi.org/10.1016/j.engstruct.2020.110448.   DOI
23 GB 50010-2010 (2015), Code for design of concrete structures, China Architecture & Building Press, Beijing, China.
24 Qin, Y., Chen, X., Zhu, X.Y., Xi, W. and Chen, Y.Z. (2020c), "Experimental compressive behavior of novel composite wall with different width-to-thickness ratios", Steel Compos. Struct., 36(2), 187-196. https://doi.org/10.12989/scs.2020.36.2.187.   DOI
25 Qin, Y., Shu, G.P., Zhou, X.L., Han, J.H. and Zhang, H.K. (2020d), "Behavior of T-shaped sandwich composite walls with truss connectors under eccentric compression", J. Constr. Steel Res., 169, 106067. https://doi.org/10.1016/j.jcsr.2020.106067.   DOI
26 Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E. and Xiao, J.Z. (2020b), "Structural behaviour of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads", Thin Wall. Struct., 151, 106726. http://dx.doi.org/10.1016/j.tws.2020.106726.   DOI
27 Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000057.   DOI
28 Epackachi, S., Whittaker, A.S. and Aref, A. (2018), "Seismic analysis and design of steel-plate concrete composite shear wall piers", Eng. Struct., 133, 105-123. http://dx.doi.org/10.1016/j.engstruct.2016.12.024.   DOI
29 Guo, Q.Q. and Zhao, W.Y. (2019), "Design of steel-concrete composite walls subjected to low-velocity impact", J. Constr. Steel Res., 154, 190-196. http://dx.doi.org/10.1016/j.jcsr.2018.12.001.   DOI
30 Hu, X.B., Huang, Z.M. and Chen, M.D. (2004), "Primary study of applicability of plane-section assumption of shaped RC columns", J. Chongqing Jianzhu Univ., 26(3), 26-30.   DOI
31 Huang, S.T., Huang, Y.S., He, A., Tang, X.L, Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.   DOI
32 Huang, Z. and Liew, J.Y.R. (2016a), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel Res., 124, 142-162. http://dx.doi.org/10.1016/j.jcsr.2016.05.001.   DOI
33 Sabouri-Ghomi, S., Nasri, A., Jahani, Y. and Bhowmick, A.K. (2020), "Flexural performance of composite walls under out-of-plane loads", Steel Compos. Struct., 34(4), 525-545. https://doi.org/10.12989/scs.2020.34.4.525.   DOI
34 Qin, Y., Chen, X., Xi, W., Zhu, X. and Chen, Y. (2020e), "Eccentric compressive behavior of novel composite walls with T-section", Steel Compos. Struct., 35(4), 495-508. https://doi.org/10.12989/scs.2020.35.4.495.   DOI
35 Ridha, M.M.S., Li, D.D., Clifton, G.C. and Ma, X. (2019), "Structural behavior of composite panels made of lightly profiled steel skins and lightweight concrete under concentric and eccentric loads", J. Struct. Eng., 145(10), 04019093. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002380.   DOI
36 Rasool, M. and Singha, M.K. (2020), "Aeroelastic analysis of pre-stressed variable stiffness composite panels", J. Vib. Control, 26(9-10), 724-734. http://dx.doi.org/10.1177/1077546319889865.   DOI
37 Seddighi, M., Barkhordari, M.A. and Hosseinzadeh, S.A.A. (2019), "Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs", Steel Compos. Struct., 33(5), 729-746. http://dx.doi.org/10.12989/scs.2019.33.5.729.   DOI
38 Ji, X.D., Cheng, X.W., Jia, X.F. and Varma, A.H. (2017), "Cyclic in-plane shear behavior of double-skin composite walls in high-rise buildings", J. Struct. Eng., 143(6), 04017025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001749.   DOI
39 Huang, Z. and Liew, J.Y.R. (2016b), "Structural behavior of steel-concrete-steel sandwich composite wall subjected to compression and end moment", Thin Wall. Struct., 98, 592-606. http://dx.doi.org/10.1016/j.tws.2015.10.013.   DOI
40 JGJ/T 380-2015 (2015), Technical specification for steel plate shear wall, China Architecture & Building Press; Beijing, China.
41 Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings-Sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.   DOI
42 Lee, W., Kwak, H.G. and Hwang, J.Y. (2019a), "Bond-slip effect in steel-concrete composite flexural members: Part 1-Simplified numerical model", Steel Compos. Struct., 32(4), 537-548. https://doi.org/10.12989/scs.2019.32.4.537.   DOI
43 Lee, W., Kwak, H.G. and Kim, J.R. (2019b), "Bond-slip effect in steel-concrete composite flexural members: Part 2-Improvement of shear stud spacing in SCP", Steel Compos. Struct., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549.   DOI
44 Liu, P. and Yao, Q.F. (2010), "Dynamic reliability of structures: the example of multi-grid composite walls", Struct. Eng. Mech., 36(4), 463-479. https://dx.doi.org/10.12989/sem.2010.36.4.463.   DOI
45 Liu, W.Y., Li, G.Q. and Jiang, J. (2018), "Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall", Steel Compos. Struct., 29(2), 231-242. https://doi.org/10.12989/scs.2018.29.2.231.   DOI
46 Mydin, M.A.O. and Wang, Y.C. (2011), "Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression", Thin Wall. Struct., 49, 66-76. http://dx.doi.org/10.1016/j.tws.2010.08.007.   DOI
47 Sener, K.C. and Varma, A.H. (2014), "Steel-plate composite walls: Experimental database and design for out-of-plane shear", J. Constr. Steel Res., 100, 197-210. http://dx.doi.org/10.1016/j.jcsr.2014.04.014.   DOI
48 Sener, K.C., Varma, A.H., and Ayhan, D. (2015), "Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design", J. Constr. Steel Res., 108, 46-59. http://dx.doi.org/10.1016/j.jcsr.2015.02.002.   DOI
49 Seo, J., Varma, A.H., Sener, K. and Ayhan, D. (2016), "Steel-plate composite (SC) walls: In-plane shear behavior, database, and design", J. Constr. Steel Res., 119, 202-215. http://dx.doi.org/10.1016/j.jcsr.2015.12.013.   DOI
50 Mirza, S.A. and Skrabek, B.W. (1991), "Reliability of short composite beam-column strength interaction", J. Struct. Eng., 117(8), 2320-2339. http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2320).   DOI
51 Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y. and Liu, F.J. (2013), "Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls", J. Constr. Steel Res., 88, 206-219. http://dx.doi.org/10.1016/j.jcsr.2013.05.001.   DOI
52 Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. http://dx.doi.org/10.1016/j.jcsr.2012.10.008.   DOI
53 Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.12989/scs.2013.91.4.1301.   DOI
54 Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. http://dx.doi.org/10.12989/scs.2019.33.4.569.   DOI
55 Wright, H. (1998), "The axial load behaviour of composite walling", J. Constr. Steel Res., 45(3), 353-375. https://doi.org/10.1016/S0143-974X(97)00030-8.   DOI
56 Wu, X.C., Wan, S.W., Guo, Z.L. and Yang, Z.Q. (2005), "The assumption of the plane section in analysis of L-shaped reinforced concrete columns under biaxial load", Sichuan Build. Sci., 31(4), 5-7,25.   DOI