• Title/Summary/Keyword: Buckling resistance

Search Result 200, Processing Time 0.028 seconds

An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가)

  • Lee, Seong Hui;Shim, Hyun Ju;Lee, Eun Taik;Hong, Soon Jo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.493-501
    • /
    • 2007
  • Recently, in the domestic amount of materials,curtailment and economic efficiency security by purpose, tapered beam application is achieved, but the architectural design technology of today based on the material non-linear method does not consider solutions to problems such as brittle fracture. So, geometric non-linear evaluation thatincludes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. Therefore, in this study, we used ANSYS, a proven finite elementanalysis program,and material and geometric non-linear analysis to study existing and completed tapered H-section as deep beam's analysis model. Main parameters include the width-thickness ratio of web, stiffener, and flange brace, with the experimental result obtained by main variable buckling and limit strength evaluation. We made certain that a large width-thickness ratio of the web decreases the buckling strength and short unbraced web significantly improves ductility.

Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression

  • Roy, Krishanu;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.37-66
    • /
    • 2019
  • In cold-formed steel structures, such as trusses, wall frames and portal frames, the use of back-to-back built-up cold-formed stainless-steel lipped channels as compression members are becoming increasingly popular. The advantages of using stainless-steel as structural members are corrosion resistance and durability, compared with carbon steel. The AISI/ASCE Standard, SEI/ASCE-8-02 and AS/NZS do not include the design of stainless-steel built-up channels and very few experimental tests or finite element analyses have been reported in the literature for such back-to back cold-formed stainless-steel channels. Current guidance by the American Iron and Steel Institute (AISI) and the Australian and New Zealand (gAS/NZS) standards for built-up carbon steel sections only describe a modified slenderness approach, to consider the spacing of the intermediate fasteners. Thus, this paper presents a numerical investigation on the behavior of back-to-back cold-formed stainless-steel built-up lipped channels. Three different grades of stainless steel i.e., duplex EN1.4462, ferritic EN1.4003 and austenitic EN1.4404 have been considered. Effect of screw spacing on the axial strength of such built-up channels was investigated. As expected, most of the short and intermediate columns failed by either local-global or local-distortional buckling interactions, whereas the long columns, failed by global buckling. All three grades of stainless-steel stub columns failed by local buckling. A comprehensive parametric study was then carried out covering a wide range of slenderness and different cross-sectional geometries to assess the performance of the current design guidelines by AISI and AS/NZS. In total, 647 finite element models were analyzed. From the results of the parametric study, it was found that the AISI & AS/NZS are conservative by around 10 to 20% for cold-formed stainless-steel built-up lipped channels failed through overall buckling, irrespective of the stainless-steel grades. However, the AISI and AS/NZS can be un-conservative by around 6% for all three grades of stainless-steel built-up channels, which failed by local buckling.

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads (강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동)

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

Developments of double skin composite walls using novel enhanced C-channel connectors

  • Yan, Jia-Bao;Chen, An-Zhen;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.877-889
    • /
    • 2019
  • The developments of double skin composite (DSC) walls with novel enhanced C-channel connectors (DSCW-EC) were reported. Followed axial compression tests on prototype walls were carried to evaluate structural performances of this novel DSC composite structures. The testing program consists of five specimens and focused on the layout of the novel enhanced C-channel (EC) connectors, which include the web direction of C-channels, steel-faceplate thickness, vertical and horizontal spacing of C-channels. Crushing in concrete core and buckling of steel faceplate were two main observed failed modes from the compression tests. However, elastic or plastic buckling of the steel faceplate varies with designed parameters in different specimens. The influences of those investigated parameters on axial compressive behaviors of DSCW-ECs were analyzed and discussed. Recommendations on the layout of novel EC connectors were then given based on these test results and discussions. This paper also developed analytical models for predictions on ultimate compressive resistance of DSCW-ECs. Validation against the reported test results show that the developed theoretical models predict well the ultimate compressive resistance of DSCW-ECs.

A Comparison of Design Strength Equations between Steel and Fiber Reinforced Polymer Composites Columns (철골 및 섬유보강 폴리머(FRP) 복합 기둥의 설계강도식에 관한 비교 연구)

  • Choi, Yeol;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.85-93
    • /
    • 2003
  • Steel, concrete and their combination materials are the most 6commonly used materials for civil engineering structural systems such as buildings, bridge structures and other structures. Recently, however, fiber reinforced polymer (FRP) composites, a relatively new composite material made of fibers and polymer resins, have been gradually used in structural systems as an alternative structural material. This paper describes a comparison of design strength equations for steel column and FRP composite column based on design philosophies. The safety factors used in allowable stress design (ASD) are relatively higher in FRP structural design than steel structural design. Column critical stress equations of FRP composites column from an experimental study can be represented by Euler elastic buckling equation at the long-range of slenderness, and an exponential form at the short-range of slenderness as defined in Load and Resistance Factor Design (LRFD) of steel column. The column strength of steel and FRP composite columns in large slenderness is independent of material strength, this result verified the elastic buckling equation as derived by Eq. (15) and Eq. (5).

  • PDF

A Study on the Influence of Track Stability for Ballast Resistance Force (도상저항력이 궤도 안전성에 미치는 영향)

  • 박준명;이방우;박선규;이종득
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.169-173
    • /
    • 2003
  • Transportation by railroad is superior to other transport in a mass transport, stability, rapid transit, delightfulness and low-pollution etc. But, it need to ensure a track stability that supports the train-load for high-speed in transportation by railroad. Ballast resistance force resists against the buckling of track taking a rail-tie's place. So, it plays an important role in a careful train-service. So, in this papers, we forced on measuring and theorizing about the Ballast Resistance Force that play a key role in track stability and high-speed. And we studied the mechanical property. Finally, we suggested the method of securing Ballast Resistance Force and the report for a careful train-service in high-speed.

Establishment of Fire Reliability Assessment Method for Structural Strength (화재시 구조강도에 대한 신뢰성 평가방법의 정립)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.54-62
    • /
    • 2017
  • This paper describes the behavior and failure probability of the basic structural members in a fire for the fire safety assessment of offshore structures. A fire safety assessment can be accomplished by comparing the fire resistance of the members with the fire severity of the heat load due to fire. The fire severity is represented as the maximum temperature of the members using the Eurocode 1 standard fire curve and heat transfer equation. On the other hand, the fire resistance is the limiting temperature calculated by a simplified formula in the case of simple structural members. Considering the complexity of FPSOs and offshore structures, a general-purpose structural analysis program should be used and the limiting temperature obtained by analyzing the structural strength of the members through an elasto-plastic analysis with a large deflection, and compared with the maximum temperature. Also, the equality of these two methods of evaluating the fire resistance was confirmed by comparing them. Following three criteria, the strength, serviceability and stability, three failure modes, namely the first failure of a hinge, large deflection and buckling, were chosen. The failure temperature was verified for each failure mode. using the AFOSM method in the equation of the fire severity and fire resistance, thereby giving the failure probability of the member. By applying these processes to the example of a beam and plate, the behavior of the structure and failure (temperature?) of each failure mode can be determined.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges (장대레일 철도 교량의 축력 영향인자 분석)

  • Kim Kyung Sam;Han Sang Yun;Lim Nam Hyoung;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF