• Title/Summary/Keyword: Buckling resistance

Search Result 203, Processing Time 0.028 seconds

Establishment of Fire Reliability Assessment Method for Structural Strength (화재시 구조강도에 대한 신뢰성 평가방법의 정립)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.54-62
    • /
    • 2017
  • This paper describes the behavior and failure probability of the basic structural members in a fire for the fire safety assessment of offshore structures. A fire safety assessment can be accomplished by comparing the fire resistance of the members with the fire severity of the heat load due to fire. The fire severity is represented as the maximum temperature of the members using the Eurocode 1 standard fire curve and heat transfer equation. On the other hand, the fire resistance is the limiting temperature calculated by a simplified formula in the case of simple structural members. Considering the complexity of FPSOs and offshore structures, a general-purpose structural analysis program should be used and the limiting temperature obtained by analyzing the structural strength of the members through an elasto-plastic analysis with a large deflection, and compared with the maximum temperature. Also, the equality of these two methods of evaluating the fire resistance was confirmed by comparing them. Following three criteria, the strength, serviceability and stability, three failure modes, namely the first failure of a hinge, large deflection and buckling, were chosen. The failure temperature was verified for each failure mode. using the AFOSM method in the equation of the fire severity and fire resistance, thereby giving the failure probability of the member. By applying these processes to the example of a beam and plate, the behavior of the structure and failure (temperature?) of each failure mode can be determined.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges (장대레일 철도 교량의 축력 영향인자 분석)

  • Kim Kyung Sam;Han Sang Yun;Lim Nam Hyoung;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang;Ahmed, Mizan;Tran, Viet-Linh;Jia, Hong;Chen, Shicai;Nguyen, Tan N.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.689-706
    • /
    • 2022
  • Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.

Analysis Torsional Behavior of I-Girder with Corrugated Webs (파형 웹-플레이트 거더의 비틀림 거동 연구)

  • Kim, Jong-Min;Kim, Sung-Nam;Jeon, Jin-Su;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • Resistance to lateral torsional buckling of steel I-girder (open section) is a very important design requirement. But, most studies of steel I-girder with corrugated webs were invested in shear behavior. Until now, most studies about Lateral torsional buckling of I-girder with corrugated webs have been based on Lindner.J's study. the study includes that the pure torsional constant of I-girder with corrugated webs doesn't different from that of I-girder with flat webs. This paper pesents pure torsional constant I-girder with sinusoidally corrugated webs by using finite element analysis.

  • PDF

Developments in composite construction and cellular beams

  • Lawson, R.M.;Hicks, S.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.193-202
    • /
    • 2005
  • This paper describes recent developments in composite construction and their effect on codified design procedures in the UK. Areas of particular interest include: rules on shear connection, design of beams with web openings, serviceability limits, such as floor vibrations, and fire safe design. The design of cellular beams with regular circular openings now includes generalized rules for web-post buckling, and for the development of in-plane moment in the web-post for asymmetric sections. Closed solutions for the maximum shear force due to limits on web-post bending or buckling are presented. The fire resistance of cellular beams is also dependent on the temperature of the web-post, and for closely spaced openings. It is necessary to increase the thickness of fire protection to the web. For serviceability design of beams, deflection limits and natural frequency and response factor for vibration are presented. It may be necessary to use stricter limits for certain applications.

Optimal Design of Metallic Sandwich Plates with Inner Dimpled Shell Subjected to 3-Point Bending (굽힘 하중을 받는 딤플형 금속 샌드위치판재의 최적설계)

  • Seong D.Y.;Jung C.G.;Yoon S.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.702-705
    • /
    • 2005
  • Metallic sandwich plates with Inner dimpled shell subjected to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high quality precision and bonded with same material skin sheets by resistance welding or adhesive bonding process. Optimized shape of inner dimple is a hemispherical shell to minimize weight without failure, including face yielding, face buckling and inner dimple buckling. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times than solid plates with same strength

  • PDF

Dynamic Instability of Diagonally Braced Steel Frames under Seismic Excitation (대각선 철골 중심가새골조의 지질동하에서의 동적불안정 거동)

  • 김정재;이철호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.288-295
    • /
    • 2004
  • Concentrically braced steel frames are considered as being quite pone to soft-story response due to the degradation in brace compressive resistance after buckling under severe ground motions. When combined with the system P-Delta effects, collapse of the concentrically brsced frames by dynamic instability becomes highly probable. In this stidy, a new, relatively simple dynamic instability coefficient was proposed for diagonally braced steel flames by explicitly considering the strength degradation of the brace after buckling. Nonlinear dynamic analysis results showed that the dynamic instability coefficient proposed in this study predicted collapse limit state more consistently than the conventional one which ignores the strength degradation of the brace.

  • PDF