• Title/Summary/Keyword: Buckling load

Search Result 1,341, Processing Time 0.024 seconds

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel (면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가)

  • 구경회
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

Buckling Characteristics of the KALIMER-150 Reactor Vessel Under Lateral Seismic Loads and the Experimental Verification Using Reduced Scale Cylindrical Shell Structures

  • Koo Gyeong-Hoi;Lee Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.537-546
    • /
    • 2003
  • The purpose of this paper is to investigate the buckling characteristics of a conceptually designed KALIMER-150(Korea Advanced LIquid MEtal Reactor, 150MWe) reactor vessel and verify the buckling behavior using the reduced scale cylindrical shell structures. To do this, nonlinear buckling analyses using finite element method and evaluation formulae are carried out. From the results, the KALIMER-150 reactor vessel exhibits a dominant bending buckling mode and is significantly affected by the plastic behavior. The interaction effects with the vertical seismic load cause the lateral buckling load to be slightly decrease. From the results of the buckling experiments using reduced scaled cylindrical shell structures, it is verified that the buckling modes such as pure bending, pure shear, and mixed(bending plus shear) mode clearly appear under a lateral load corresponding to the slenderness ratio of cylinder.

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

Experimental determination of the buckling load of rectangular plates using vibration correlation technique

  • Singhatanadgid, Pairod;Sukajit, Padol
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.331-349
    • /
    • 2011
  • This study investigates the use of a vibration correlation technique (VCT) to identify the buckling load of a rectangular thin plate. It is proposed that the buckling load can be determined experimentally using the natural frequencies of plates under tensile loading. A set of rectangular plates was tested for natural frequencies using an impact test method. Aluminum and stainless steel specimens with CCCC, CCCF and CFCF boundary conditions were included in the experiment. The measured buckling load was determined from the plot of the square of a measured natural frequency versus an in-plane load. The buckling loads from the measured vibration data match the numerical solutions very well. For specimens with well-defined boundary conditions, the average percentage difference between buckling loads from VCT and numerical solutions is -0.18% with a standard deviation of 5.05%. The proposed technique using vibration data in the tensile loading region has proven to be an accurate and reliable method which might be used to identify the buckling load of plates. Unlike other static methods, this correlation approach does not require drawing lines in the pre-buckling and post-buckling regions; thus, bias in data interpretation is avoided.

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S.;Lee, H.P.;Lu, C.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.241-257
    • /
    • 2005
  • A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.