DOI QR코드

DOI QR Code

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S. (Institute of High Performance Computing) ;
  • Lee, H.P. (Institute of High Performance Computing) ;
  • Lu, C. (Institute of High Performance Computing)
  • Received : 2004.11.16
  • Accepted : 2005.03.07
  • Published : 2005.05.30

Abstract

A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

Keywords

References

  1. Aboudi, J., Cederbaum, G. and Elishakoff, J. (1990), 'Dynamic stability analysis of viscoelastic plates by Lyapunov exponents', J. Sound Vib., 139, 459-467 https://doi.org/10.1016/0022-460X(90)90676-Q
  2. Ari-Gur, J. and Elishakoff, I. (1997), 'Dynamic instability of a transversely isotropic column subjected to a compression pulse', Comput. Struct., 62(5), 811-815 https://doi.org/10.1016/S0045-7949(96)00295-7
  3. Ari-Gur, J. and Simonetta, S.R. (1997), 'Dynamic pulse buckling of rectangular composite plates', Composites Part B, 28, 301-308 https://doi.org/10.1016/S1359-8368(96)00028-5
  4. Ari-Gur, J., Weller, T. and Singer, J. (1982), 'Experimental and theoretical studies of columns under axial impact', Int. J. Solids Struct., 18(7), 619-641 https://doi.org/10.1016/0020-7683(82)90044-0
  5. Budiansky, B. (1967), 'Dynamic buckling of elastic structures: criteria and estimates', In: Herrmann, G. (Ed.), Dynamic Stability of Structures, Pergamon Press, Oxford
  6. Budiansky, B. and Roth, R.S. (1962), 'Axsymmetric dynamic buckling of clamped shallow spherical shells', Collected Papers on Instability of Shell Structure, NASA TN D-1510
  7. Cederbaum, G., Aboudi, J. and Elishakoff, I. (1991), 'Dynamic instability of shear-deformable viscoelastic laminated plates by Lyapunov exponents', Int. J. Solids Struct., 28, 317-327 https://doi.org/10.1016/0020-7683(91)90196-M
  8. Chien, L.S. and Palazotto, A.N. (1992), 'Dynamic buckling of composite cylibdrical panels with high-order transverse shears subjected to a transverse concentrated load', Int. J. Non-Linear Mech., 27(5), 719-734 https://doi.org/10.1016/0020-7462(92)90029-7
  9. Cui, S., Cheong, H.K. and Hao, H. (1999a), 'Experimental study of dynamic buckling of simply-supported columns under axial slamming', J. Eng Mech., ASCE, 125(5), 513-520 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:5(513)
  10. Cui, S., Cheong, H.K. and Hao, H. (1999b), 'Experimental study of dynamic buckling of plates under fluid-solid slamming', Int. J. Impact Eng., 22(7), 675-691 https://doi.org/10.1016/S0734-743X(99)00022-6
  11. Ding, Q., Liu, Z.S. and Li, J.J. (2002), 'Improving the cell mapping method and determining domains of attraction of a nonlinear structural system', Recent Advances in Computational Science & Engineering, Edited by H.P. Lee & K. Kumar, Imperial College Press, 642-645
  12. Dost, S. and Glockner, P.G. (1982), 'On the dynamic stability of viscoelastic perfect columns', Int. J. Solids Struct., 18(7), 587-596 https://doi.org/10.1016/0020-7683(82)90041-5
  13. Gilat, R. and Aboudi, J. (1995), 'Dynamic inelastic response and buckling of metal matrix composite infinitely wide plates due to thermal shocks', Mech. Composite Mater. Struct., 2, 257-271 https://doi.org/10.1080/10759419508945844
  14. Gilat, R. and Aboudi, J. (2002), 'The Lyapunov exponents as a quantitative criterion for the dynamic buckling of composite plates', Int. J. Solids Struct., 39(2), 467-481 https://doi.org/10.1016/S0020-7683(01)00108-1
  15. Hartzman, M. (1974), 'Comparison of calculated static and dynamic collapse pressure for clamped spherical dome', AIAA J., 12, 568-570 https://doi.org/10.2514/3.49292
  16. Jones, N. and Reis dos H.L.M. (1980), 'On the dynamic buckling of a simple elastic-plastic model', Int. J. Solids Struct., 16(11), 969-989 https://doi.org/10.1016/0020-7683(80)90099-2
  17. Karagiozova, D. and Jones, N. (1992a), 'Dynamic buckling of a simple elastic-plastic model under pulse loading', Int. J. Non-Linear Mech., 27(6), 981-1005 https://doi.org/10.1016/0020-7462(92)90050-H
  18. Karagiozova, D. and Jones, N. (1992b), 'Dynamic pulse buckling of a simple elastic-plastic model including axial inertia', Int. J. Solid Struct., 29(10), 1255-1272 https://doi.org/10.1016/0020-7683(92)90236-M
  19. Karagiozova, D. and Jones, N. (2001), 'Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells', Int. J. Solid Struct., 38(38-39), 6723-6749 https://doi.org/10.1016/S0020-7683(01)00111-1
  20. Kounadis, A.N. and Mallis, J. (1988), 'Dynamic stability of initially crooked columns under time-dependent axial displacement of their support', Quart. J. Mech. Appl. Math., 41(4), 579-596 https://doi.org/10.1093/qjmam/41.4.579
  21. Kounadis, A.N. and Raftoyiannis, J.G. (1990), 'Dynamic stability criteria of nonlinear elastic damped or undamped systems under step loading', AIAA J., 28, 1217-1223 https://doi.org/10.2514/3.25197
  22. Kounadis, A.N. (1991), 'Chaoslike phenomena in the non-linear dynamic stability of discrete damped or undamped systems under step loading', Int. J. Non-Linear Mech., 26(3-4), 301-311 https://doi.org/10.1016/0020-7462(91)90060-7
  23. Kounadis, A.N. (1996), 'Qualitative criteria in nonlinear dynamic bucking and stability of autonomous dissipative systems', Int. J. Non-Linear Mech., 31(6), 887-906 https://doi.org/10.1016/S0020-7462(97)87164-8
  24. Kounadis, A.N. (1999), 'A geometric approach for establishing dynamic buckling loads of autonomous potential two-degree-of-freedom systems', J. Appl. Mech., 66, 55-60 https://doi.org/10.1115/1.2789169
  25. Kounadis, A.N., Gantes, C.J. and Raftoyiannis, I.G. (2004), 'A geometric approach for establishing dynamic buckling loads of autonomous potential N-degree-of-freedom systems', Int. J. Non-Linear Mech., 39(10), 1635-1646 https://doi.org/10.1016/j.ijnonlinmec.2004.01.005
  26. Lee, H.P. (1995a), 'Effects of initial curvature on the dynamic stability of a beam with tip mass subjected to axial pulsating loads', Int. J. Solids Struct., 32(23), 3377-3392 https://doi.org/10.1016/0020-7683(94)00311-J
  27. Lee, H.P. (1995b), 'Dynamic stability of a beam on multiple supports subject to pulsating conservative axial loads', Engineering Computations, 12(4), 385-393 https://doi.org/10.1108/02644409510799659
  28. Lee, H.P. (1997), 'Flutter of a cantilever rod with a relocatable lumped mass', Comput. Methods Appl. Mech. Eng., 144(1-2), 23-31 https://doi.org/10.1016/S0045-7825(96)01163-2
  29. Lee, H.P., Tan, T.H. and Leng, G.S.B. (1997), 'Dynamic stability of spinning timoshenko shafts with a time-dependent spin rate', J. Sound Vib., 199(3), 401-415 https://doi.org/10.1006/jsvi.1996.0656
  30. Levitas, J., Weller, T. and Singer, J. (1994), 'Poincare-like simple cell mapping for non-linear dynamical system', J. Sound Vib., 176(5), 641-662 https://doi.org/10.1006/jsvi.1994.1404
  31. Lindberg, H.E. and Florence, A.L. (1987), Dynamic Pulse Buckling-theory and Experiment, Martinus Nijhoff Publishers, Dordrecht
  32. Liu, Z.S., Swaddiwudhipong, S. and Koh, C.G. (2002), 'Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method', Struct. Eng. Mech., 14(4), 455-472 https://doi.org/10.12989/sem.2002.14.4.455
  33. Meier, J.H. (1945), 'On the dynamics of elastic buckling', J. Aerosol Science, 12, 433-440 https://doi.org/10.2514/8.11279
  34. Sophianopoulos, D.S. (1999), 'Point attractors and dynamic buckling of autonomous systems under step loading', Int. J. Solids Struct., 36(35), 5357-5385 https://doi.org/10.1016/S0020-7683(98)00249-2
  35. Tabiei, A., Tanov, R.R. and Simitses, G.J. (1998), 'Numerical simulation of cylindrical laminated shells under impulsive lateral pressure', Collection of Technical 39th AIAA/ASME/ASCE/AHS Structures. Structural Dynamics & Materials Conference. J, AIAA, New York, NY, USA. 509-514
  36. Tanov, R. and Tabiei, A. (1998), 'Static and dynamic buckling of laminated composite shells', Proc. of the 5th Int. LS-DYNA Users Conf, Southfield, Michigan
  37. Weller, T., Abramovich, H. and Yaffe, R. (1989), 'Dynamic buckling of beams and plates subjected to axial impact', Comput. Struct., 32(3-4), 835-851 https://doi.org/10.1016/0045-7949(89)90368-4

Cited by

  1. STOCHASTIC THERMAL POST-BUCKLING RESPONSE OF LAMINATED COMPOSITE CYLINDRICAL SHELL PANEL WITH SYSTEM RANDOMNESS vol.04, pp.01, 2012, https://doi.org/10.1142/S1758825112001385
  2. Buckling Analysis of Variable Thickness Radially Functionally Graded Annular Sector Plates Resting on Two-Parameter Elastic Foundations by the GDQ Method vol.07, pp.06, 2015, https://doi.org/10.1142/S1758825115500830
  3. EXACT EIGEN-RELATIONS OF CLAMPED-CLAMPED AND SIMPLY SUPPORTED PIPES CONVEYING FLUIDS vol.04, pp.03, 2012, https://doi.org/10.1142/S1758825112500354
  4. Buckling and Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Beam Under Axial Load vol.08, pp.01, 2016, https://doi.org/10.1142/S1758825116500083
  5. Post-Buckled Vibration Characteristic of Composite Cylindrical Shell Panels Under Parabolic In-Plane Edge Compression vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500350
  6. DYNAMIC INSTABILITY OF COMPOSITE SKEW PLATES USING BOUNDARY CHARACTERISTIC ORTHOGONAL POLYNOMIALS vol.06, pp.06, 2014, https://doi.org/10.1142/S1758825114500781
  7. SYMPLECTIC METHOD FOR DYNAMIC BUCKLING OF CYLINDRICAL SHELLS UNDER COMBINED LOADINGS vol.05, pp.04, 2013, https://doi.org/10.1142/S1758825113500427
  8. ON THE INFLUENCE OF ATOMIC MODIFICATIONS ON THE STRUCTURAL STABILITY OF CARBON NANOTUBE HYBRIDS: NUMERICAL INVESTIGATION vol.06, pp.06, 2014, https://doi.org/10.1142/S175882511450077X
  9. Dynamic testing of a soil-steel bridge vol.35, pp.3, 2005, https://doi.org/10.12989/sem.2010.35.3.301
  10. Dynamic buckling analysis of a composite stiffened cylindrical shell vol.37, pp.5, 2005, https://doi.org/10.12989/sem.2011.37.5.509
  11. Non-linear response and buckling of imperfect laminated composite plates under in-plane pulse forces vol.235, pp.22, 2005, https://doi.org/10.1177/0954406221996391