• Title/Summary/Keyword: Buckling failure

Search Result 400, Processing Time 0.025 seconds

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Mechanical Loads of Dropper for High Speed Electric Railway (고속 전차선로 드로퍼에 대한 기계적 하중에 관한 연구)

  • Lee, Gi-Chun;Lee, Tae-Hoon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The dropper supports the contact wire and is attached using various types of dropper clips on the catenary. Droppers are subject to mechanical stress from buckling during the passage of pantographs. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the pre-sag of the dropper static load. The measured values in the experiment were similar to the theoretical predictions. To analyze the cause on fracture of dropper wire, we have conducted analysis such as SEM(Scanning Electron Microscope) of fractured specimens in the field and new specimens. Finally, we performed measurement for the variation of dynamic load on the dropper when a pantograph moved at 300km/h under the Korean high speed overhead line. If such mechanical load occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. This results will be used for special management of high speed catenary system maintenance and life estimation of dropper.

Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle (초기변형률에 의한 미소바늘의 피부조직 관통력 감소)

  • Kim, Jonghun;Park, Sungmin;Nam, Gyungmok;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.851-856
    • /
    • 2016
  • Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force.

A Study on the Design of a High-Speed Heddle Frame (고속 직기용 복합재료 헤들 프레임의 설계에 관한 연구)

  • Lee, Chang-Seop;O, Je-Hun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.250-263
    • /
    • 2001
  • The up and down speed of heddle frames that produce woven cloth by insertion of weft yarns between warp yarns has been increased recently much for productivity improvement, which induces higher inertial stresses and vibrations in the heddle frame. the heddle frame is required to reduce its mass because the heddle frame contributes the major portion of the stresses in the heddle frames during accelerating and decelerating. Conventional aluminum heddle frames have fatigue life of around 5 months at 550rpm due to their low fatigue flexural strength as well as low bending stiffness. In this work, since carbon/epoxy composite materials have high specific fatigue strength(S/p), high specific modulus(E/p), high damping capacity and sandwich construction results in lower deflections and higher buckling resistance, the sandwich structure composed of carbon/epoxy composite skins and polyurethane foam were employed for the high-speed heddle frame. The design map for the sandwich beams was accomplished to determine the optimum thickness and the stacking sequences for the heddle frames. Also the effects of the number of ribs on the stress of the heddle frame were investigated by FEM analyses. Finally, the high-speed heddle frames were manufactured with sandwich structures and the static and dynamic properties of the aluminum and the composite heddle frames were tested and compared with each other.

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete (고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구)

  • Seo, Seong Yeon;Chung, Jin An
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.471-479
    • /
    • 2002
  • In this paper, 18 square CFT columns filled with high-strength concrete were tested under concentric or eccentric axial loading. Two parameters of the experimental program included the buckling length-section depth ratio ($L_K$/D) and the eccentricity of the appled compressive load (e). In additon, mechanical properties such as the compressive concrete strength and compressive and tensile steel strength were measured and incorporated into the material models for the stress-strain relationships of concrete and steel. This model was used in an elasto-plastic analysis in order to predict the behavior of the slender CFT columns. Observtions of the failure mode during the tests under axial loadig were also presented. The strengths obtained from the analysis. Recommendations for Design, and Constructions of CFT structures were presented, as verified by the experimental results.

Failure Behavior of Octagonal Flared RC Columns Using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.58-68
    • /
    • 2014
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct and require larger amount of transverse steels. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of columns of the oblong cross-section and flared column. The experimental study for octagonal oblong cross-section was carried out by the flared columns test in strong axis. The lateral confinement method using proposed oblong hoop detail showed satisfactory performance of lateral confinement. Therefore it can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency.

Progressive Collapse Resisting Capacity of Braced Frames (가새골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Young-Ho;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.429-437
    • /
    • 2008
  • In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.