• 제목/요약/키워드: Buckling Test

검색결과 501건 처리시간 0.024초

용접(熔接)H형강(型鋼) 보의 국부좌굴(局部挫屈)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Local Buckling of Welded H-Shape Steel Beam)

  • 김석중
    • 산업기술연구
    • /
    • 제1권
    • /
    • pp.9-16
    • /
    • 1981
  • In the steel Structural design, buckling is the main factor to determine size, particularly in compression member. Buckling may sometimes occur in the form of wrinkles in thin elements, such as webs, flanges, and other parts that make up a section. This phenomenon is called local buckling. The strength of the steel and the rigidity of the frame are considerably deteriorated by the local buckling. The specimens used for this experiments, H-Shape Steel beams composed by fillet-welding, are dessified classified into two groups, ie one for web test and another for flange fest. The aim of this study is to define the influences by the local bucking on the vesisting forces, deformation and the phenomena of the internal forces in the section, and to collect the basic data for design of steel beams.

  • PDF

좌굴을 고려한 액상화 지반에 근입된 말뚝의 파괴거동 분석 (Analysis of Failure Behavior of Pile Embedded in Liquefiable Soil Deposits considering Buckling Instability)

  • 한진태;조종석;황재익;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. However, a case of pile failure was reported despite the fact that a large margin of safety factor was employed in their design. This means that the current seismic design method of pile is not agreeable with the actual failure mechanism of pile. Newly proposed failure mechanism of pile is a pile failure based on buckling instability. In this study, failure behavior of pile embedded in liquefied soil deposits was analyzed considering lateral spreading and buckling instability performing 1g shaking table test. As a result, it can be concluded that the pile subjected to excessive axial loads ($near\;P_{cr}$) can fail by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, lateral spreading increased lateral deflection of pile and reduced the buckling load, promoting more rapid collapse. In addition, buckling shape of pile was observed. In the ease of pile buckling, hinge formed at the middle of the pile, not at the bottom. And in sloping grounds, location of hinge got loiter compared with level ground because of the effects of lateral spreading.

  • PDF

복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증 (Design and Verification of Shear Buckling Test Fixture for Composite Laminate)

  • 박성준;고명균;김동관;김상국;문창오;권진회;최진호
    • Composites Research
    • /
    • 제27권4호
    • /
    • pp.158-167
    • /
    • 2014
  • 본 연구의 궁극적 목표는 현장의 구조설계자들이 복합재 평판의 전단좌굴 설계허용치를 설정할 때 사용할 수 있는 환산계수(이론값과 실험값의 차이를 보정하는 계수)를 제공하는 것이다. 이를 위해서는 광범위한 시험과 해석이 필요하며, 본 연구에서는 일단계로, 복합재 평판의 전단좌굴시험을 위해 단축인장하중을 받는 프레임 형태의 치구를 설계하고, 시험과 해석을 수행하여 그 타당성을 검토하였다. 치구의 최종 형상은 시편의 크기, 치구의 치수, 체결볼트의 수 등의 변수들이 전단좌굴하중에 미치는 영향에 대한 인자연구를 통해 결정하였다. 시험 및 해석 결과, 설계된 프레임이 의도한대로 전단좌굴을 효과적으로 유도하는 것을 확인하였다. 그러나 시험에서는 시편이 치구에 고정되어야 하므로 시편의 크기가 달라지게 되어, 시험값과 해석값의 차이가 존재하였다. 특히 원공이 커질수록, 또한 단순지지 경계조건일 경우에는 그 차이가 더 크게 나타났다. 본 연구의 결과 고정지지 전단좌굴의 경우 설계된 프레임 형태 치구를 그대로 사용할 수 있을 것으로 보이지만, 단순지지 경계일 경우 경계조건 설정방법의 수정이 필요할 것으로 판단된다.

용접박판형강의 비탄성 좌굴 거동에 대한 연구 (A Study on the Inelastic Buckling Behavior of Welded Thin-Walled Sections)

  • 이상우;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 1996
  • Inelastic buckling stress of Welded Thin-Walled Steel Sections was investigated by - using Spline Finite Strip Method. Several types of membrane residual stress and nonlinear stress-strain relationship were considered to produce reasonable fits to test results. A simple formula for the inelastic local buckling stress of welded sections was also proposed and compared with Korean Standard Specifications for Highway Bridges.

  • PDF

TBM 추진잭의 좌굴 안정성 검토를 위한 압축시험 (Compression Test of a TBM Thrust Jack for Validating Buckling Stability)

  • 김문규;조민기;조정우;정한영
    • 터널과지하공간
    • /
    • 제33권5호
    • /
    • pp.339-347
    • /
    • 2023
  • TBM 추진잭이 경사면에 접촉하거나 편심하중이 발생할 때 추진잭의 페데스탈 및 로드 부위에 횡하중에 의한 휨변형이 발생할 수 있다. 이는 추진잭 모듈의 고장을 유발할 우려가 있으므로, 추진잭 모듈 전체에 대한 좌굴 안정성을 검증할 필요가 있다. 본 연구는 추진잭 좌굴 안정성 분석을 위한 좌굴 압축시험방법을 조사하고, 압축시험 시스템을 구성하였다. 추진잭의 전체 부품을 모델링하여 수치해석을 통해 응력집중 파트를 분석하였다. 경사도 0도 조건에서 최대하중을 가압하여 압축시험을 수행하였다. 로드의 변형과 씰의 누유는 관측되지 않아서 0도 조건에서 추진잭의 좌굴 안정성을 검증하였다.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

Design of buckling restrained braces with composite technique

  • Ozcelik, Ramazan;Dikiciasik, Yagmur;Civelek, Kazim B.;Erdil, Elif F.;Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.687-699
    • /
    • 2020
  • This paper focus on the buckling restrained braces (BRBs) with new casing members (CMs). Seven BRBs with CMs consisting of precast concrete modules (PCMs) were tested to investigate the effects of CMs on the cyclic performance of BRBs. The PCMs consisted of plain and reinforced concrete casted into wooden or steel molds than they were located on the core plate (CP) via bolts. There were 14 or 18 PCMs on the CP for each BRBs. The technique of the PCMs for the CM provides that the BRBs can be constructed inside the steel or reinforced concrete (RC) structures. In this way, their applications may be rapid and practical during the application of the retrofitting. The test results indicated that the cyclic performance of the BRBs was dominated by the connection strength and confinement of the PCMs. The BRBs with PCMs wrapped with fiber reinforced polymers (FRPs) sustained stable hysteretic performance up to a CP strain of 2.0 %. This indicates that the new designed BRBs with PCMs were found to be acceptable in terms of cyclic performance. Furthermore, the connection details, isolation materials and their application techniques have been also investigated for the improved BRB design in this study.

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.

공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가 (Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics)

  • 김유성;박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

Buckling of axially loaded shell structures made of stainless steel

  • Ozer Zeybek;Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.681-691
    • /
    • 2023
  • Stainless steels are commonly employed in engineering applications since they have superior properties such as low maintenance cost, and high temperature and corrosion resistance. These features allow them to be preferred in cylindrical shell structures as well. The behavior of a cylindrical shell structure made of stainless steel can be quite different from that made of carbon steel, as the material properties differ from each other. This paper deals with buckling behavior of axially loaded cylindrical shells made of stainless-steel. For this purpose, a combined experimental and numerical study was carried out. The experimental study comprised of testing of 18 cylindrical specimens. Following the experimental study, a numerical study was first conducted to validate test results. The comparisons show that finite element models provide good agreement with test results. Then, a numerical parametric study consisting of 450 models was performed to develop more generalized design recommendations for axially compressed cylindrical shell structures made of stainless steel. A simple formula was proposed for the practical design purposes. In other words, buckling strength curve equation is developed for three different fabrication quality.