• Title/Summary/Keyword: Buck-boost mode

Search Result 111, Processing Time 0.026 seconds

Digital Control Techniques for Bidirectional CRM Buck/Boost Converter (양방향 경계모드 벅/부스트 컨버터의 디지털 제어기법)

  • Sang-Youn Lee;Woo-Seok Lee;Il-Oun Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • This paper presents the digital control techniques of a bidirectional CRM(critical-conduction mode) buck(boost) converter, a dead-time design method that optimizes ZVS(zero-voltage switching) and valley-switching operation, and a switching-frequency limitation that ensures stable converter operation. To verify the feasibility of the design, a Si-MOSFET-based bidirectional CRM buck(boost) converter is built with 260-430 V input, 160-240 V output, and 1.0 kW rated capacity. The bidirectional CRM converter achieves an efficiency of up to 99.6% at buck mode and 98.7% at boost mode under rated load conditions.

Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper (새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

Buck and Boost Photovoltaic Converter Driving Schemes under Low power level (태양광 저에너지 출력을 위한 Buck, Boost 컨버터 구동방식)

  • Kim, B.W.;Park, S.J.;Kim, K.H.;Son, M.H.;Cho, S.E.;Kim, C.U.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.669-672
    • /
    • 2005
  • Normally, the buck converter is used for the charging converter of photovoltaic generator because this converter has good characteristics compare with boost and buck-booster converter But, in case of the sollar-cell voltage is lower than charging voltage, we cannot charge the sollar energy to the charger. So, in this paper, we proposed the novel hybrid converter using by combination of buck and boost converter for the charging converter of photovoltaic generator, as a results, it can operate buck, boost and buck-boost mode. The proposed novel converter has the same characteristics of the existent buck converter and furthermore it can operate as a boost converter. So, we can make the more effective photovoltaic charging system.

  • PDF

Balanced Buck-Boost Switching Converter to Reduce Common-Mode Conducted Noise

  • Shoyama Masahito;Ohba Masashi;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.212-216
    • /
    • 2001
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitic capacitance between the drain/collector of an active switch and the frame ground through its heat sink may generate the common-mode conducted noise. We have proposed a balanced switching converter circuit, which is an effective way to reduce the common-mode conducted noise. As an example, a boost converter version of the balanced switching converter was presented and the mechanism of the common-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switching converter circuit and presents a buck-boost converter version of the balanced switching converter. The feature of common-mode noise reduction is confirmed by experimental results and the mechanism of the common-mode noise reduction is explained using equivalent circuits.

  • PDF

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.

Investigation of the Mechanism of Period-doubling Bifurcation in Voltage Mode Controlled Buck-Boost Converter

  • Xie, Ling-Ling;Gong, Ren-Xi;Zhuo, Hao-Ze;Wei, Jiong-Quan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.519-526
    • /
    • 2011
  • An investigation of the mechanism of period-doubling bifurcation in a voltage mode controlled buck-boost converter operating in discontinuous conduction mode is conducted from the viewpoint of nonlinear dynamical systems. The discrete iterative model describing the dynamics of the close-loop is derived. Period-doubling bifurcation occurs at certain values of the feedback factor. Results from numerical simulations and experiments are provided to verify the evolution of perioddoubling bifurcation, and the results are consistent with the theoretical analysis. These results show that the buck-boost converters exhibit a wide range of nonlinear behavior, and the system exhibits a typical period-doubling bifurcation route to chaos under particular operating conditions.

Photovoltaic Power System using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압형 초퍼를 이용한 태양광발전시스템)

  • Kim, Young-Cheal;Suh, Ki-Young;Woo, Jung-In;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2115-2117
    • /
    • 1998
  • The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation. solar cell temperature. The PWM power inverter is realized by driving a inverter constructed with a high frequency buck-boost chopper in the discontinuous conduction mode(DCM). This paper present a buck-boost PWM inverter and its application for residential system.

  • PDF

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF