• Title/Summary/Keyword: Buck-boost

Search Result 343, Processing Time 0.024 seconds

Stand-Alone PV System by Parallel Operation Control of Current-Source Inverter without Battery (전류원 인버터의 병렬운전에 의한 축전지 없는 태양광 시스템의 구성)

  • 박성준;김종달
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.291-297
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

Photovoltaic Power Generation Control by A New Buck-Boost chopper circuit (새로운 승강압 초퍼회로에 의한 태양광발전제어)

  • Kim, Y.C.;Byun, H.G.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2177-2180
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to got maximum power. To obtain maximum power from Photovoltaic array, hotovoltaic power system usually requres maximum power point c tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the com-plicated problem. This paper presents power characteristics of residential Photovoltaic system applying a buck-boost conversion system.

  • PDF

A New partial resonant buck-boost AC-DC converter for high power factor (부분공진형 고역률 승강압 AC-DC 컨버터)

  • Shin, Hyun-Sik;Suh, Ki-Young;Kwon, Soon-Kurl;Kwak, Dong-Kurl;Lee, Hyun-Woo;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.512-515
    • /
    • 1994
  • This paper propose the high power factor and efficiency buck-boost AC-DC converter because the input current is made sinusoidal wave in single phase alternating current source. The proposed converter is able to minimize switching loss by the partial resonant switching which is for switching devices to operate the zero voltage switching (ZVS) or zero current switching(ZCS) without increasing their voltage and current stresses.

  • PDF

Converter functioned Buck-boost and Forward operation for driving of Cascaded H-bridge multilevel inverter with a single input source (Cascaded H-bridge 멀티레벨인버터의 단일 입력전원 구동을 위한 Buck-boost와 Forward 기능을 갖는 컨버터)

  • Kwon, Cheol Soon;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.453-454
    • /
    • 2011
  • 본 논문에서는 벅-부스트와 포워드 컨버터의 기능을 갖는 컨버터를 제안한다. 제안하는 컨버터는 Cascaded H-bridge 멀티레벨인버터와 같이 다수의 독립된 전원을 요구하는 회로 구조를 단일 입력 전원단으로 구성할 수 있는 특징을 가진다. 벅-부스트 컨버터의 입력 인덕터는 변압기로 대체되며 컨버터 스위치의 ON 동작시 포워드 동작에 의해 변압기 2차측으로 전력전달이 이루어지며, 스위치 OFF시 변압기 1차측 자화인덕턴스에 저장된 에너지가 비절연된 벅-부스트 컨버터의 출력 커패시터로 전달된다. 제안된 컨버터의 동작 모드에 따른 이론적 분석을 시행하고 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Parallel Operation of Trans-Z-Source Network Full-Bridge DC-DC Converter for Wide Input Voltage Range

  • Lee, Hyeong-Min;Kim, Heung-Geun;Cha, Hon-Nyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • This paper presents a novel transformer isolated parallel connected full-bridge dc-dc converter using recently developed trans-Z-source network. Unlike the traditional voltage -fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost function can be achieved and the converter reliability can be greatly improved. A 6 kW prototype dc-dc converter is built and tested to verify performances of the proposed converter.

Utility interactive PV system using buck-boost chopper and partial resonant Inverter (승강압초퍼와 부부공진 인버터를 이용한 계통연계형 태양광 발전시스템)

  • 고강훈;이현우;김영철;정명웅;홍두성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.278-281
    • /
    • 1999
  • In a utility interactive photovoltaic system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The DC current becomes pulsated causes the distortion of the AC current waveform. This paper presents the reduced pulsation of DC input current by operating the inverter with buck-boost chopper in the discontinuous conduction mode. The DC current with contains harmonics component is analyzed by means of separating into two terms of a ripple component and a direct component. The constant DC current without pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provide a sinusoidal AC current for domestic loads and the utility line with unity power factor.

  • PDF

Development of a Bidirectional DC/DC Converter with Smooth Transition Between Different Operation Modes (방향 절환이 자유로운 양방향 DC/DC 컨버터 개발)

  • Yoo, Chang-Gyu;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.224-230
    • /
    • 2006
  • The conventional way to implement a bidirectional converter with boost/buck has been to use two general purpose PWM ICs with a single supply voltage. In this case, when one direction mode is in operation, the other is disabled and the output of the error amplifier of the disabled IC may be saturated to a maximum value or zero. Therefore, during mode transition, a circuit which can disable the switching operation for a certain time interval is required making it impossible to get a seamless transition. In this paper, the limitations of the conventional 42V/14V bi-directional DC/DC converter implemented with general current mode PWM ICs with a single supply voltage are reviewed and a new current mode PWM controller circuit with a dual voltage system is proposed. The validity of the proposed circuit is investigated through simulation. and experiments.

A Study on Single Stage High Power Factor AC-DC Converter (단일 전력단 고역률 AC-DC 컨버터에 관한 연구)

  • Lee, Won-Jae;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.590-597
    • /
    • 2000
  • Design of single state AC-DC converter with high power factor for low level applications is proposed. The proposed converter is obtained from the integration of a buck-boost converter and the half-bridge DC-DC converter. This converter gives the good power factor correction low line current harmonic distortions and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method and synchronous rectifier. The modelling and detailed analysis for the proposed converter are performed. To verify the performance of the proposed converter a 100W converter has been designed

  • PDF

Peak Voltage Feedforward Control of PWM Buck-boost Converter (피드포워드 제어 방식을 적용한 승강압형 컨버터)

  • Gwag, Gun-Hee;Seo, Bo-Hyeok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2721-2723
    • /
    • 1999
  • DC and small-signal ac characteristics are examined for a pulse-width modulated (PWM) dc-dc buck-boost converter with a peak voltage modulation (PVM) feedforward control. Circuit model is used to derive an expression for the output voltage in terms of the input voltage and load resistance. Small-signal circuit model is used to derive the input-to-output voltage transfer function (audiosusceptibility).

  • PDF

Soft-Switching Buck-Boost Converter with High Power Factor for PAM Inverter System

  • K. Taniguchi;T. Watanabe;T. Morizane;Kim, N. ura;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.264-269
    • /
    • 1998
  • A proposed soft-switching buck-boost PWM converter has a lot of advantages, Viz., electric isolation, a high power factor, low switching losses, low EMI noise, reduction of the voltage and current stresses, etc. In a new PFC converter, the switching device is replaced by the loss-less snubber circuit to achieve the zero voltage switching (ZVS) at the maximum current. However, the charging current of the capacitor in the loss-less snubber circuit distorts the input current waveforms. To improve the input current waveform, a new duty factor control method is proposed in this paper.

  • PDF