• Title/Summary/Keyword: Bubble velocity

Search Result 250, Processing Time 0.02 seconds

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

Flow Field Separating Technique in Bubbly Flow using Discrete Wavelet (이산 웨이블릿을 이용한 Bubbly flow의 유통분리기법)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Choi, Je-Eun;Takei, Masahiro;Kang, Byung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.777-783
    • /
    • 2008
  • Nowadays wavelet transforms are widely used for the analyses of PIV velocity vector fields. This is bemuse the wavelet provides not only spatial information of the velocity vectors but also of time and frequency domains. In this study, a discrete wavelet trC1f1$form has been applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform The performances of the discrete wavelet transform is investigated by changing the level of power of discretization. The decomposed images by the wavelet multiresolution showed conspicuous characteristics of the bubbly flows according to the level changes. The high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, at which high leveled wavelets could play a dominant roles to reveal the flow characteristics.

An Experimental Study on the Generation of Air-core with Swirl Flow in a Horizontal Circular Tube (수평원통 관에서 선회유동의 공기동 발생에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.922-930
    • /
    • 2004
  • An experimental investigation was performed to study on the generation of air bubble and air core with swirling flow in a horizontal cicular tube. To determine some characteristics of the flow, 2D PIV technique is employed for velocity measurement in water. The experimental rig is manufactured from an acryl tube. The test tube diameter of 80mm, and a length of 3000mm. The used algorithm is the gray leve cross-correlation method(Kimura et al. 1986). An Ar-ion laser is used and the light from the laser(500mW) passes through a probe to make two-dimensional light sheet. In order to make coded images of the tracer particles on one frame, an AOM(Acoustic-Optical Modulator) is used. The maximum axial velocities showed near the test tube wall at y/D =0.1 and y/D =0.9 along the test tube. The higher Reynolds number increase, the lower axial velocities are showed in the center of the test tube. The air bubbles are generated from Re =10,000 and developed into air core from the recirculating water pump rpm equal 30Hz. The pressure and temperature are measured across the test tube at X/D=3.33.

A Study on the Aerodynamic Load Characteristics of an Elliptic Airfoil (타원형 날개의 공력 특성 연구)

  • 이기영;손명환;김해원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2003
  • Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.

A Study on the Improvement of Condensation and Boiling Heat Transfer on Horizntal Tube by Fin Effect(l)-Shellside Boiling- (수평 원형전열관의 핀효과에 의한 응축 및 비등 열전달촉진에 관한 연구 (1)-튜브외부 비등-)

  • 한규일;조동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1264-1274
    • /
    • 1994
  • Heat transfer performance of integral-fin tube which is used in recipro turbo refrigerator or high compact heat exchangers is studied. Eight tubes with trapezoidal shaped integral-fins having fin densities from 748 to 1654 fpm and 10, 30 internal grooves are tested. A plain tube having the same(inner and outer) diameter as the fin tubes is also tested for comparison. Pool boiling heat transfer of R-11 is investigated experimentally and theoretically on single tube arrangement. The refrigerant evaporates at saturation state of 1 bar on the outside tube surface and heat is supplied by not water which circulates inside of the tube. From the result of eight fin tubes and one plain tube tested, a tube having 1299 fpm-30 grooves shows the best performance. A maximum overall heat transfer coefficient of this tube is about 4000 $W/m^{2}K$ at 2.8m/s of water velocity. The maximum heat transfer enhancement (i.e., the ratio of overall heat transfer coefficients of finned to plain tubes)is about 2.1.

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

Mechanism of Drag Reduction by Dimples and Roughness on a Sphere (구에 설치한 딤플과 표면 거칠기에 의한 항력 감소 메커니즘)

  • Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.191-194
    • /
    • 2006
  • In this paper, we present a detailed mechanism of drag reduction by dimples and roughness on a sphere by measuring the streamwise velocity above the dimpled and roughened surfaces, respectively. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with high momentum near the wall and overcomes strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e. a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder. In the case of roughened sphere, the boundary layer flow is directly triggered by roughness and changes to a turbulent flow. Due to this change, the drag significantly decreases. As the Reynolds number further increases, transition to turbulence occurs earlier on the sphere surface. Because of faster growth of turbulent boundary layer by roughness, earlier transition thickens the boundary layer, resulting in earlier separation and drag increase with increasing Reynolds number

  • PDF

Analysis of Electrostatic Ejection for Liquid Droplets (정전기력에 의한 액적 토출 분석)

  • Kim, Yong-Jae;Lee, Suk-Han;Byun, Do-Young;Son, Sang-Uk;Jeong, Dae-Won;Ko, Han-Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.505-508
    • /
    • 2006
  • An electrostatic ink jet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head using the electrostatic force has been proposed in this study. In order to prove the theory of the developed electrostatic ink jet head, the applicable and basic theory has been studied using distilled water and water with sodium dodecyl surfate (SDS). Also, a numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Furthermore, experiments have been carried out using a downward glass capillary with outside diameter of $500{\mu}m$. The gravity, surface tension, and electrostatic force have been analyzed with high voltages of 0 to 5kV. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field. The results of the experiments have shown good agreement with those of numerical analysis.

  • PDF