• Title/Summary/Keyword: Bubble pulse wave

Search Result 9, Processing Time 0.021 seconds

Integrated Structural Dynamic Response Analysis considering the UNDEX Shock Wave and Gas Bubble Pulse (수중폭발 충격파와 가스구체 압력파를 함께 고려한 구조물의 동적응답해석)

  • Lee, Sang-Gab;Hwon, Jeong-Il;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.148-153
    • /
    • 2007
  • Two typical impact loadings, shock wave and gas bubble pulse, due to UNDEX(UNDerwater EXplosion), should be considered together for the closest response analysis of structure subjected to UNDEX to a reality. Since these two impact loadings have different response time bands, however, their response characteristics of structure are different from each other. It is impossible to consider these effectively under the current computational environment and the mathematical model has not yet been developed. Whereas Hicks model approximates the fluid-structure interaction due to gas bubble pulse as virtual mass effect, treating the flow by the response of gas bubble after shock wave as incompressible ideal fluid contrary to the compressible flow due to shock wave, Geers-Hunter model could make the closest response analysis of structure under UNDEX to a real one as a mathematical model considering the fluid-structure interaction due to shock wave and gas bubble pulse together using acoustic wave theory and DAA(Doubly Asymptotic Approximation). In this study, the application and effectiveness of integrated dynamic response analysis of submerged structure was examined with the analysis of the shock wave and gas bubble pulse together.

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Whipping factor - a Measure of Damage Potential of an UNDEX Bubble Pulse (휘핑계수-수중폭발 가스구체 압력파 크기의 척도)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.637-643
    • /
    • 2005
  • A new novel Whipping Factor is proposed as a measure of the ship damage potential due to an underwater explosion bubble pulse. The factor was derived from the relationships among the charge weight, its depth and the fluid acceleration due to pulsating gas bubble. From the whipping response analyses for three uniform Timoshenko beams with similar characteristics of real naval surface ships, we have confirmed the maximum bending moment responses of beams due to whipping are almost same if the applied whipping factor is constant regardless of the charge weights and depths, which could validate the proposed whipping factor.

Primary Radiation Force to Ultrasound Contrast Agents in Propagating and Standing Acoustic Field

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.1-8
    • /
    • 2009
  • Primary radiation force on ultrasound contrast agents (UCA) in a propagating and standing acoustic field was explored. A specific ultrasound contrast agent $Albunex^{(R)}$ and $Optison^{(R)}$ were chosen for simulation. The model was developed based on a shelled bubble model proposed by Church. The numerical simulation suggests that bubble translational motion is more significant in therapeutic ultrasound due to higher intensity and long pulse duration. Even a single cycle of a propagating wave of 4 MPa at 1 MHz can cause a bubble translational motion of greater than $1{\mu}m$ which is approximately one tenth of capillary. Hence, UCA characteristics can be significantly changed in therapeutic ultrasound without rapid bubble collapses.

Painless Microjet Injector Using Laser Pulse Energy (레이저 펄스 에너지를 이용한 무통증 마이크로젯 약물전달시스템)

  • Yoh, Jai-Ick;Han, Tae-Hee;Hah, Jung-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.547-550
    • /
    • 2011
  • We have developed a laser-based needle-free liquid drug-injection device. A laser beam is focused inside the liquid contained in the rubber chamber of a micro-scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is less than 100 ${\mu}m$, and we verify that the injected microjet is fast enough to penetrate soft human tissue. In the experiment, the microjet penetrated a 5% gelatin-water solution that replicates the human thrombus and pork-fat tissue.

Self-sensing measurement of piezo inkjet and its Applications (피에조 잉크젯의 셀프 센싱 검출 및 응용)

  • Kwon, Kye-Si;Kim, Wou-Sik;Kim, Sang-Il;Shin, Seung-Joo;Kim, Seong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.366-372
    • /
    • 2007
  • Self-sensing measurement of piezo inkjet and its application are discussed. The pressure wave inside the inkjet dispenser was measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially available laser vibrometer. Here, two applications using self-sensing signal were discussed: waveform design for high speed jetting and condition monitoring. For waveform design, two pulse waveform was designed based on self-sensing signal such that the pressure wave after droplet formation can be minimized. For condition monitoring, self-sensing signal was shown to be effective in detecting air bubble trapped in inkjet printhead.

  • PDF

Laser Acceleration of Electron Beams to the GeV-class Energies in Gas Jets

  • Hafz, Nasr A.M.;Jeong, Tae-Moon;Lee, Seong-Ku;Choi, Il-Woo;Pae, Ki-Hong;Kulagin, Victor V.;Sung, Jae-Hee;Yu, Tae-Jun;Cary, John R.;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • In a laser-plasma wakefield accelerator, the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal wave or plasma bubble in a way similar to the excitation of a wake wave behind a boat as it propagates on the water surface. Electric fields inside the plasma bubble can be several orders of magnitude higher than those available in conventional RF-based particle accelerator facilities which are limited by material breakdown. Therefore, if an electron bunch is properly phase-locked with the bubble's acceleration field, it can gain relativistic energies within an extremely short distance. Here, in the bubble regime we show the generation of stable and reproducible sub GeV, and GeV-class electron beams. Supported by three-dimensional particle-in-cell simulations, our experimental results show the highest acceleration gradients produced so far. Simulations suggested that the plasma bubble elongation should be minimized in order to achieve higher electron beam energies.

Electric Spark System as Underwater Acoustic Source - I. Pressure pulses from low electric energy - (수중음원으로써의 전기방전시스템- I. 낮은 전기에너지로부터의 음압펄스 -)

  • Kim, Sung-Boo;Kim, Sang-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.32-35
    • /
    • 1996
  • The pressure pulses generated from the underwater electric spark system ranged from 0.4 to 1.6kJ are measured with the variation of source depth and range. The characteristics of pressure pulses obtained through this experiment continue to show the same electric energy and depth dependence previously reported, but two particular phenomena are observed. First, it is observed that the peak pressure of the 1st bubble pulse induced from implosion is higher than that of the initial shock wave, which is particularily apparent to high electric energy more than 10kJ previous studies. Second, it has been reported that the energy ratio (potential energy of bubble/intrinsic energy of source) has some tendency to "droop" on the low electric energy as 0.02 for 5kJ and 0.01 for 1kJ but the results of the present experiment show that it continues to have the ratio of 0.01 near 1kJ again.

  • PDF

Role of Liquid Vaporization in Liquid-Assisted Laser Cleaning (액막 보조 레이저 세척에서 액체 기화의 역할)

  • Lee, Joo-Chul;Jang, Deok-Suk;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.188-196
    • /
    • 2003
  • Liquid-assisted cleaning technology utilizing a nanosecond laser pulse is effective for removing submicron particulates from a variety of solid substrates. In the technique, saturated vapor is condensed on a solid surface to form a thin liquid film and the film is evaporated explosively by laser heating. The present work studies the role of liquid-film evaporation in the cleaning process. First, optical interferometry is employed for in-situ monitoring the displacement of the laser-irradiated sample in the cleaning process. The experiments are performed for estimating the recoil force exerted on the target with and without liquid deposition. Secondly, time-resolved visualization and optical reflectance probing are also conducted for monitoring the phase-change kinetics and plume dynamics in vaporization of thin liquid layers. Discussions are made on the effect of liquid-film thickness and dynamics of plume and acoustic wave. The results confirm that cleaning force is generated when the bubble nuclei initially grow in the strongly superheated liquid.