• Title/Summary/Keyword: Bubble model

Search Result 307, Processing Time 0.026 seconds

Development of a Mechanistic Fission Gas Release Model for LWR $UO_2$ Fuel Under Steady-State Conditions

  • Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.229-246
    • /
    • 1996
  • A mechanistic model has been developed to predict the release behavior of fission gas during steady-state irradiation of LWR UO$_2$ fuel. Under the assumption that UO$_2$ grain surface is composed of fourteen identical circular faces and grain edge bubble can be represented by a triangulated tube around the circumference of three circular grain faces, it introduces the concept of continuous formation of open grain edges tunnels that is proportional to grain edge swelling. In addition, it takes into account the interaction between the gas release from matrix to grain boundary and the reintroduction of gas atoms into the matrix by the irradiation-induced re-solution of grain face bubbles. It also treats analytically the behavior of intragranular, intergranular, and grain edge bubbles under the assumption that both intragranular and intergranular bubbles are uniform in both radius and number density. Comparison of the present model with experimental data shows that the model's prediction produces reasonable agreement for fuel with centerline temperatures of 1000 to 140$0^{\circ}C$, wide scatter band for fuel with centerline temperatures lower than 100$0^{\circ}C$, and underprediction for fuel with centerline temperatures higher than 140$0^{\circ}C$.

  • PDF

A Study on a Conceptualization-oriented SDSS Model for Landscape Design (조경설계를 위한 공간개념화 지향의 공간의사결정지원시스템 모델에 대한 연구)

  • Kim, Eun Hyung
    • Spatial Information Research
    • /
    • v.22 no.6
    • /
    • pp.55-65
    • /
    • 2014
  • By combining the role of current GIS technology and design behaviors from the cognitive perspective, spatial conceptualization can be extended efficiently and creatively for ill-structured problems. This study elaborates the model of a conceptualization-oriented SDSS(Spatial Decision Support System) for a landscape design problem. Current information-oriented GIS technology plays a minor role in planning and design. The three attributes in planning and design problems describe how the deficiencies of current GIS technology can be seen as a failure of the technology. These are summarized: (1) Information Explosion/Information Ignorance (2) Dilemma of Rigor and Relevance (3) Ill-structured Nature of planning and Design. In order to implement the conceptualization idea in the current GIS environment, it will be necessary to shift from traditional, information-oriented GISs to conceptualization-oriented SDSSs. The conceptualization-oriented SDSS model reflects the key elements of six important theories and techniques. The six useful theories and techniques are as follows; (1) Human Information Processing (2) Tool/Theory Interaction (3) The Sciences of the Artificial and Epistemology of Practice (4) Decision Support Systems (DSSs) (5) Human-Computer Interaction (HCI) (6) Creative Thinking. The future conceptualization-oriented SDSS can provide capabilities for planners and designers to figure out some "hidden organizations" in spatial planning and design, and develop new ideas through its conceptualization capability. The facilitation of conceptualization has been demonstrated by presenting three key ideas for the framework of the SDSS model: (1) bubble-oriented design support system (2) prototypes as an extension of semantic memory, and (3) scripts as an extension of episodic memory in a cognitive pschology perspective. The three ideas can provide a direction for the future GIS technology in planning and design.

Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process (부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가)

  • Yang, Jong-Won;Choi, Yong-Ho;Chae, In-Seok;Kim, Mi-Sug;Jeong, Yong-Hoon;Kim, Tae-Geum;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 1. Model Development (난류전단 흐름에서의 기포응집에 관한 수치모의: 1. 모형의 개발)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1357-1363
    • /
    • 1994
  • A Monte-Carlo simulation model is developed to predict size distribution produced by the coalescence of air bubbles in turbulent shear f1ow. The simulation consists of generating a population of air bubbles into the initial positions at each time step and tracking them by simulating motions and checking collisions. The radial displacement of air bubbles in the simulation model is produced by numerically solving an advective diffusion equation. Longitudinal displacements are generated from the logarithmic flow velovity distribution and the bubble rise velocity. Collision of air bubbles for each time step is detected by a geometric test using their relative positions at the beginning of the time step and relative displacements during the time step. At the end of the time step, the total number of bubbles, their positions, and sizes are updated. The computer program is coded such that minimum storages for sizes and positions of bubbles are required.

  • PDF

Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism (직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing (연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Kim, Byung-Ji;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool (수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;김영인;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • If the safety depressurization system of APR-1400, the Korean next generation reactor, is in operation, water, air and steam are successively discharging into a in-containment refueling water storage tank through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in the most significant damages to the submerged structures if the oscillation frequency is the same or close to the natural frequency of the structures. The involved phenomena are so complicated that most of the prediction of frequency and pressure loads has been resorted to experimental work and computational approach has been precluded. This study deals with a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a sparger, by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. Among the multiphase flow models, the VOF (Volume Of Fluid) model was selected to simulate the water, air and steam flows. A satisfactory result was obtained comparing the analysis results with the ABB-Atom test results which had been performed for the development of sparser.

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.