• Title/Summary/Keyword: Bubble model

Search Result 307, Processing Time 0.029 seconds

Physical Parameters for Synthesis of Virtual Soap Bubbles using Straws (스트로를 이용한 가상 비눗방울 재현을 위한 물리 파라미터)

  • Seok, Yunji;Chin, Seongah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.455-460
    • /
    • 2020
  • As computer hardware and computer graphics technologies have developed in recent years, one can find research on the creation of bubbles. However, it is not easy to find soap bubbles that are modeled and rendered using actual physical parameters. The bubbles are expressed in a variety of models and colors depending on which tool is used, which strength is used, and the conditions of the surrounding environment. Therefore, in this paper, we present synthetic methods to create virtual soap bubbles based on physical parameters derived from some straws such as the bubbles' diameter over time and the number of bubbles when blowing. On the top of that, we will show a model of a soap bubble that can be usable in a virtual reality contents and optimized with rendering parameters.

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

Analyses of Overtopping Velocity using Analytical Solution(Ritter's Solution) of Dam-Break Flow (댐 붕괴흐름의 해석해(Ritter의 해)를 이용한 월파유속 분석)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.669-679
    • /
    • 2008
  • The present study examines similarity of behavior between an overtopping wave generated by a plunging wave and a dam-break flow through hydraulic model tests. The dam-break flow has been employed to estimate the overtopping effect on the basis of the dam-break flow's behavior similar to the overtopping. In this study, the overtopping velocity was measured by a modified image technique using bubble and bubble texture images called bubble image velocitmetry. From the measurements, the vertical profiles of horizontal overtopping velocity at cross-sections along the deck were presented and discussed. Maximum velocity and depth-averaged velocity at each cross-section were compared with an analytical solution solving the dam-break flow, Ritter's solution. The initial water depth of importance for the solution was determined from the tested wave condition and the overtopping measurements. The comparison shows that the solution with the initial water depth estimated using the front velocity of the overtopping wave is in good agreements with the measurements.

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

A Study on the Ship Wake Model under the Ocean Environment (해상 환경을 고려한 수상함 항적 모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Kim, Woo-Shik;Park, Joung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-30
    • /
    • 2021
  • The ship wake generated by rotation of the propeller yields changes of characteristics of sound wave such as attenuation and scattering. To develope a battle field environment simulator for military purposes, it is very important to understand acoustical properties of ship wake. Existing research results have limitations in direct application because they performed under simple conditions or model ships were applied. In this study, we developed a ship wake generation model based on the ship's geometric wake distribution theory. The model can provide spatial distribution and void fraction with various marine environments as well as ship size. Through the developed model, geometric distribution features of ship wake according to the ship's maneuvering conditions were successfully simulated. In addition, changes of the bubble void fraction with time at any location within the battle field environment were identified. Therefore, the developed model is expected to be used in the development of a simulator to measure the acoustic characteristics of the ship wake.

Experimental Study on Geometry of a Microlayer During Single-Bubble Nucleate Boiling (단일기포 핵비등 시 미세액막층 구조에 대한 실험적 연구)

  • Jeong, Seunghyuck;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.519-526
    • /
    • 2015
  • To measure the physical parameters of the simple microlayer model for the prediction of the heat flux and heat transfer rate due to the evaporation of the microlayer during nucleate boiling, the microlayer geometry was experimentally examined. The parameters, including initial thickness, moving velocity and microlayer radius, were measured by total reflection and interferometry techniques using a laser. Single-bubble nucleate boiling experiments were conducted using saturated water on a horizontal surface under atmospheric pressure. The geometric characteristics of the microlayer underneath the bubbles periodically nucleating at a nucleation site at an average heat flux of $200kW/m^2$ were analyzed. The experimental results in the present study show that the maximum initial thickness of the microlayer and the horizontal moving velocity are $5.4{\mu}m$ and 0.12 m/s, respectively.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

DEVELOPMENT OF AN ORTHOGONAL DOUBLE-IMAGE PROCESSING ALGORITHM TO MEASURE BUBBLE VOLUME IN A TWO-PHASE FLOW

  • Kim, Seong-Jin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to measure the bubble size and volume in a two-phase boiling flow. The central-active contour model originally proposed by P. $Szczypi\'{n}ski$ and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour stability. The modified model is then applied to the algorithm to extract the object boundary. This improved central contour model could be applied to obscure objects using a variable threshold value. The extracted boundaries from each image are merged into a three-dimensional image through the developed algorithm. It is shown that the object reconstructed using the developed algorithm is very similar or identical to the real object. Various values such as volume and surface area are calculated for the reconstructed images and the developed algorithm is qualitatively verified using real images from rubber clay experiments and quantitatively verified by simulation using imaginary images. Finally, the developed algorithm is applied to measure the size and volume of vapor bubbles condensing in a subcooled boiling flow.

Flow Characteristics of a Paraglider Canopy with Leading-edge Tubercles (선단돌기가 적용된 패러글라이더 캐노피의 유동특성 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Park, Jungmok;Song, Ginseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.106-114
    • /
    • 2021
  • In the present study, we investigate the flow characteristics of a paraglider canopy with leading-edge tubercles by performing force measurement and surface flow visualizations. The experiment is conducted at Re = 3.3×105 in a wind tunnel, where Re is the Reynolds number based on the mean chord length and the free-stream velocity. The canopy model with leading-edge tubercles has flow characteristics of a two-step stall, showing an earlier onset of the first stall than the canopy model without leading-edge tubercles. However, the main stall angle of the tubercled model is much larger than that of the canopy model without tubercles, resulting in a higher aerodynamic performance at high angles of attack. The delay in the main stall is ascribed to the suppression of separation bubble collapse around the wingtip at high angles of attack.