• Title/Summary/Keyword: Bubble experiment

Search Result 163, Processing Time 0.031 seconds

Hydraulic Impact Scope and Dissolved Oxygen Distribution by the Micro-bubble Aeration in an Artificial Lake (인공호소에서 마이크로 버블 포기에 의한 수리학적 영향반경과 용존산소 분포)

  • Choi, Sunhwa;Park, Hyungseok
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • This study investigated the hydraulic impact scope and dissolved oxygen (DO) concentration distribution by the micro-bubble aeration in the Juksan Lake located in Asan city in Chungcheongnam-do province. A tracing experiment for hydraulic impact scope was used which constituted a 20% rhodamine solution. A 160 m-guideline was installed in the horizontal direction of the micro-bubble jet flow and the rhodamine concentration, water temperature, and DO concentration were measured at depths of 1 m, 2 m, and 3 m at intervals of 10 m. In the Juksan Lake, the effective range of jet flow discharged by the micro-bubble generator was about 40 m, and after then the jet plume moved up to 80 m to 120 m through the advection and diffusion processes of ambient water. DO concentration in the lake was maintained at 7.4-12.6 mg/L during tracking experiment. The DO of the lake sediments improved from 0.2 mg/L to 8.0 mg/L after applying micro-bubble aeration. In conclusion, the micro-bubble aeration can be an effective technology for the management and improvement of water quality in an agricultural reservoir.

Analysis on the Bluegill Blocking Effects using Bubbles (버블을 이용한 파랑볼우럭 차단 효과 분석)

  • Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.390-397
    • /
    • 2017
  • The introduction of exotic fish species may reduce the number of native fish species and disturb the aquatic ecosystem. Therefore, measures to block and manage fish species are required. Accordingly, a fish species blocking system using bubbles was developed in this study to block exotic fish species. An experimental channel was produced and the possibility of blocking such exotic fish species was evaluated. The bubble generator is a system that produces a bubble curtain by generating air with an air compressor that blocks fish species. Bluegill, which is an exotic fish species in the country, was tested with this generator. The size of bluegill was between 0.10 m and 0.15 m and the depth of water was maintained at 0.70 m. The flow velocity of the experiment channel was classified into 3 levels (0.20 m/s, 0.10 m/s, and 0.05 m/s) considering the natatorial ability of the fish species. The results revealed that 70.07% of bluegill showed movements to swim upstream before applying the bubble, but it is considered that the ascending rate would be higher given that the fish species thinks downstream is a habitat and showed almost no movement. However, when the blocking facility was installed, most fish species showed movements to return to the downstream again by the bubble curtain, indicating a very high blocking effect. In particular, when the generating bubble was terminated, the fish species swam back to the upstream area very soon, so the fish species blocking effect using the bubble was excellent.

A Study on the Effects of the Filter on Flow Pattern of the Traditional Gating System by the Water Modeling Experiment (수모델 실험을 이용한 전통 탕구계의 유동 양상에 미치는 필터의 영향 연구)

  • Hwang, Ho-Young;Nam, Cheol-Hee;Choi, Young-Sim;Hong, Jun-Ho
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.208-214
    • /
    • 2016
  • Casting defects, which are closely related to entrapped air bubbles and metallic oxides, occur very frequently in the casting process. Many researchers have shown that these defects can be reduced by adopting an appropriate gating system design. But, it is difficult for field engineers to identify a specific gating system that is more appropriate for their products. In this study, we tried to draw a comparison of gating system designs with and without ceramic foam filters. A ceramic foam filter was added to the horizontal runner just after the sprue to prevent air bubble generation and to reduce turbulence without change of the gating system design. To verify the effects of initial pouring velocity, the experiment was conducted with four different amounts of water volume in the reservoir. Results of the water modeling experiment applying the filter showed remarkably changed flow characteristics. Although the study confirmed that use of the filter may change the flow characteristics, it needs to be noted that only filter use alone cannot solve all the problems caused by a poorly designed gating system.

The Experimental Study on Deflation of Air for Top-Down Joint area (역타기둥 이음부의 공기포 배출을 위한 실험적 연구)

  • 임형일;이동하;백민수;박병근;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.763-768
    • /
    • 2001
  • The purpose of this study is to research a specific material characteristics of top down concrete at column joint and to reduce column joint opening. Based on the established top down study, the experiment to apply an real construction case is performed. When the concrete placed into joint of top down column, raised air bubble is left as opening. This study is examined the incomplete packing reason in the top down column and found to air deflation method. The result of study is below (1) As the method to minimize column opening caused from confined air, it is required that an air exhaust port installation in joint column. (2) From air exhaust port installation, most of air bubble in column part is exhausted. As the concrete placing height is going up, air bubble size is going smaller.

  • PDF

Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis - (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.

A Study on the Wall Mobility of Magnetic Domain for the Singel Crystal $YFeO_3$ ($YFeO_3$ 박판 단결정의 자벽이동에 관한 연구)

  • 김종오;한관희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.47-54
    • /
    • 1986
  • Since the wall mobility of bubble magnetic materials havin g the large q (q=Kac/2$\pi$$M_s^2$) like a $YFeO_3$ has been found to be proportional to the wall energy theoretically crystallographical direction dependence of wall energy calculated by the basis on the spin configuration of the bubble wall which lies in the ac plane was compared with the crystallographical direction dependence of wall mobility which was measured by the experiment. The sample was a single crystal of $YFeO_3$ which was cut into plate normal to the C axis and polished t a thickness of about 60${\mu}{\textrm}{m}$ The measurement of the wall mobility was carried out by optical system using the magneto-optic Faraday effect. From the good agreement of the crystallographical direction dependence of wall mobility and will energy it was found that the spin configuration of the bubble wall suggested is fair.

  • PDF

Porous Photocatalytic Concrete Filter Manufacturing and Efficiency Evaluation for NOx Reduction (NOx 저감을 위한 다공성 광촉매 콘크리트 필터 제조 및 효율평가)

  • Kim, Jong Kyu
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.223-229
    • /
    • 2022
  • A porous photocatalyst concrete filter was successfully produced to remove NOx, by mixing TiO2 photocatalyst with lightweight aerated concrete. Ultra Fine Bubbles were used to form continuous pores inside the porous photocatalytic concrete filter, which was mixed via a bubble generation experiment. The optimal mixing condition was determined to be with 4 % of the bubble generation agent B. NO removal specimens were prepared for various photocatalytic loading conditions, and the specimen containing 3 % P-25 removed NO at a concentration of 1.03 µmol in 1 h. The NO removal rate of the porous photocatalytic concrete filter prepared in this study was 10.99 %. This photocatalytic filter performance was more than 9 times the amount of NO removed by a general photocatalytic filter. The porous photocatalyst concrete filter for removing NOx developed in this study can be applied to various construction sites and the air quality can be solved by reducing NOx contributing to the formation of fine particles.

Effect of Curing Sheet Conbined with Bubble Sheet and Heat generating Materias under Light Source on Surface Temperature of Cement Mortar (광발열소재와 버블시트를 조합한 양생시트가 모르타르의 표면온도 이력에 미치는 영향)

  • Kim, Su-Hoo;Hu, Win-Yao;Beak, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.160-161
    • /
    • 2022
  • This study is to investigate the temperature history over time of the cement mortar to confirm the bubble sheet insulation effect using the heat generat sheet. As a result of the experiment, it was confirmed that the heating effect was 6℃ higher on average than other types of sheets when the heating sheet is attached on the bottom of the double layered bubble sheet. For future research, it is planned to verify the heating performance by using the heating sheet under the same environmental conditions as the heating performance will be verified.

  • PDF

Experimental Study on CHF Enhancement of Plate by Ultrasonic (초음파에 의한 평판에서의 임계열유속 증진에 대한 실험적 연구)

  • Kim, Dae-Hun;Kweon, Young-Chel;Jeong, Ji-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1512-1517
    • /
    • 2003
  • Augmentation of CHF by ultrasonic is experimentally studied under subcooling pool boiling condition. Experiment is carried out for downward-facing plate with and without the ultrasonic. The working fluid is distilled water. Experimental apparatus is composed of a bath, power supply, test section, ultrasonic generator, DAQ system. Experiment is performed with the subcooling temperature of $5^{\circ}C$, $20^{\circ}C$, $40^{\circ}C$ and the inclined angle of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $45^{\circ}$, 90. From the experimental results, it is found that ultrasonic effect enhances CHF of the downward-facing plate. As increasing the degree of subcooling, the rate of CHF increase is enhanced. As increasing the inclined angle, the rate of CHF increase decreases. Also, we can see that the heat transfer mechanism of CHF augmentation is closely connected with the dynamic behavior of bubble generation and departure.

  • PDF

Thermal Performance of the Bubble Jet Loop Heat Pipe Using Eccentric Heater in Evaporating Section (증발부에 편심 가열부를 사용한 버블젯 루프 히트파이프의 열성능)

  • Kim, Jong-Soo;Kim, Sung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.652-658
    • /
    • 2015
  • The Bubble Jet Loop Heat Pipe (BJLHP) is designed to operate in the horizontal orientation. The motion of the bubble generated by boiling working fluid on a heater surface in the evaporating section of the BJLHP helps the working fluid transfer heat to the condensing portion. In this study, we changed the position of the heater in the evaporating section from concentric to eccentric. The concentric heater is located at the center of the tube in the evaporating part, and the eccentric heater is located at the bottom of the inner surface of the same tube. We used R-134a as the working fluid, and the charging ratio was 50%vol. We measured the temperatures of the evaporating and condensing sections by changing the input electric power from 50 W to 200 W, measuring every 50 W. The results of the experiment show that the effective thermal conductivity of BJLHP using an eccentric heater is four times higher than the BJLHP obtained using a concentric heater. Additionally, we conducted a visualization experiment on the evaporating portion of BJLHP to determine why the effective thermal conductivity was higher. The working fluid was water, and we took pictures of the flow visualization for BJLHP. Nucleate boiling with the eccentric heater was more intense and generated more bubbles. Therefore, the eccentric heater was more saturated by the liquefied working fluid.