DOI QR코드

DOI QR Code

Hydraulic Impact Scope and Dissolved Oxygen Distribution by the Micro-bubble Aeration in an Artificial Lake

인공호소에서 마이크로 버블 포기에 의한 수리학적 영향반경과 용존산소 분포

  • Choi, Sunhwa (Rural Research Institute, Korea Rural Community Corporation) ;
  • Park, Hyungseok (Department of Environmental Engineering, Chungbuk National University)
  • 최선화 (한국농어촌공사 농어촌연구원) ;
  • 박형석 (충북대학교 환경공학과)
  • Received : 2016.12.12
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

This study investigated the hydraulic impact scope and dissolved oxygen (DO) concentration distribution by the micro-bubble aeration in the Juksan Lake located in Asan city in Chungcheongnam-do province. A tracing experiment for hydraulic impact scope was used which constituted a 20% rhodamine solution. A 160 m-guideline was installed in the horizontal direction of the micro-bubble jet flow and the rhodamine concentration, water temperature, and DO concentration were measured at depths of 1 m, 2 m, and 3 m at intervals of 10 m. In the Juksan Lake, the effective range of jet flow discharged by the micro-bubble generator was about 40 m, and after then the jet plume moved up to 80 m to 120 m through the advection and diffusion processes of ambient water. DO concentration in the lake was maintained at 7.4-12.6 mg/L during tracking experiment. The DO of the lake sediments improved from 0.2 mg/L to 8.0 mg/L after applying micro-bubble aeration. In conclusion, the micro-bubble aeration can be an effective technology for the management and improvement of water quality in an agricultural reservoir.

본 연구에서는 호소 수체에 산소를 포기시켜 주는 마이크로 버블 발생장치를 충남 아산에 위치하고 있는 죽산호에 설치하여 수체에 미치는 수리학적 영향반경과 용존산소 (DO) 농도 분포를 조사하였다. 수체에 미치는 수리학적 영향반경은 로다민 염료를 이용한 추적실험을 하였으며, 마이크로 버블 제트류의 수평방향으로 총 160 m 길이의 가이드라인을 설치하여 10 m 지점마다 수심 1 m, 2 m, 3 m에서 로다민 농도, 수온, DO 등을 측정하였다. 죽산호의 로다민 배경농도는 $0.3-0.5{\mu}g/L$이었고, 용액 주입 후 15분 이내에 20-40 m 거리까지 확산되었으며, 거리 50-120 m의 수심 2 m 지점에서 로다민 농도가 $3.1-12{\mu}g/L$를 나타냈다. 본 연구결과로부터 마이크로 버블 발생장치의 제트류에 의한 직접적인 영향 범위는 40-50 m이고, 그 이후에는 이류 및 확산에 의한 영향으로 120 m까지 이동하는 것으로 나타났다. 수중 DO 농도는 경과시간과 이격 거리에 상관없이 7.4-12.6 mg/L의 농도를 유지하였고, 마이크로 버블 적용 전의 호소 바닥층 DO 0.2 mg/L에서 운영 후 8.0 mg/L 이상으로 DO가 개선되는 것으로 나타났다. 본 연구 결과에 의하면 마이크로 버블 포기 기술은 농업용 호소의 수질 관리와 개선에 기여할 것으로 기대된다.

Keywords

References

  1. Belanger, T.V. 1981. Benthic oxygen demand in Lake Apopka, Florida. Water Resources 15: 267-274.
  2. Cha, H.S. 2009. Present state and future prospect for micro-bubble technology. Bulletin of Food Technology 22: 544-552. (in Korean)
  3. Choi, S.H, Kim, H.D., Lee, T.H. and Park, W.Y. 2015. Study on main factors affecting water quality using a multivariate statistical analysis in the agricultural lakes. Journal of the Korea National Committee on Irrigation and Drainage 22: 82-97. (in Korean)
  4. Gelda, R.K., Auer, M.T. and Effler, S.W. 1995. Determination of sediment oxygen demand by direct measurement and by inference from reduced species accumulation. Marine and Freshwater Research 46: 81-88.
  5. Kang, Y.M. and Song, H.G. 2000. Effect of bottom sediments on oxygen demand of overlying water in onshore of Lake Paldang. Korean Journal of Limnology 33: 23-30. (in Korean)
  6. Kim, B.C. and Cho, K.S. 1989. The hypolimnetic anoxic zone and the metalimnetic oxygen minimum layer in a deep reservoir Lake Soyang. Korean Journal of Limnology 22: 159-166. (in Korean)
  7. Kim, G.R. 2013. Water treatment using by micro-bubble- domestic application-. Journal of the Korea Fisheries Infrastructure Promotion Association 4(3): 37-42. (in Korean)
  8. Kim, H.J. and Yamamoto, T.C. 2013. Implement of water quality environment using by micro-bubble - abroad application -. Journal of the Korea Fisheries Infrastructure Promotion Association 4(3): 43-48. (in Korean)
  9. Kim, J.B. and Kim, G.R. 2013. Implement of water quality environment using by micro-bubble. Journal of the Korea Fisheries Infrastructure Promotion Association 4(3): 30-36. (in Korean)
  10. Lim, J.Y, Kim, H.S., Park, D.S., Cho, Y.G., Song, S.J., Park, S.Y. and Kim, J.H. 2016. Characteristic of mixing and DO concentration distribution in aeration tank by microbubble supply. Journal of the Korea Academia-Industrial Cooperation Society 17: 251-259 (in Korean)
  11. MAFRA and KRC. 2013. The Study on Water Quality Monitoring of the Agricultural Reservoirs (2013). Rural Research Institute, Ministry of Agriculture Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC), Ansan, Korea. pp. 50-142. (in Korean)
  12. MAFRA and KRC. 2014a. 2013 Annual Report on Agricultural Production. Rural Research Institute, Ministry of Agriculture Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC), Ansan, Korea. (in Korean)
  13. MAFRA and KRC. 2014b. The Study on Convergence Technologies Development and Application for Agricultural Water Treatment (I). Rural Research Institute, Ministry of Agriculture Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC), Ansan, Korea. (in Korean)
  14. MAFRA and KRC. 2015a. The Study on Convergence Technologies Development and Application for Agricultural Water Treatment (II). Rural Research Institute, Ministry of Agriculture Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC), Ansan, Korea. pp. 166-171. (in Korean)
  15. MAFRA and KRC. 2015b. The Study on Management and Control of the Agricultural Reservoir Sediments. Rural Research Institute, Ministry of Agriculture Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC), Ansan, Korea. (in Korean)
  16. Sommaruga, R. 1991. Sediment oxygen demand in manmade Lake Ton-Ton (Uruguay). Hydrobiologia 215: 215-221. https://doi.org/10.1007/BF00764856
  17. Takada, K. and Kato, K. 1991. Benthic oxygen consumption in Lake Suwa. Verhandlungen des Internationalen Verein Limnologie 24: 1091-1094.
  18. Tomaszek, J. 1991. Oxygen consumption by bottom sediments. Verhandlungen des Internationalen Verein Limnologie 24: 3045-3049.

Cited by

  1. Development of Natural Purification Technology Considering Material Cycle in River Reaches vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.213
  2. 바이오스톤 볼 수처리 시스템에 의한 오염물질 저감 및 저수지의 수질개선효과 산정 vol.28, pp.5, 2019, https://doi.org/10.14249/eia.2019.28.5.471