• 제목/요약/키워드: Bubble Location

검색결과 43건 처리시간 0.026초

UV nano imprint 공정에서 air bubble area 최소화에 대한 연구 (Experimental study to minimize the air bubble during the imprinting process in UV nanoimprint lithography)

  • 최성웅;이동언;이우일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1934-1938
    • /
    • 2008
  • Formation of air bubble is the one of common defects in UV nano imprint lithography. Location of dispensing and volume of droplets are among the most important parameters in the process. ]n this study, UV curable resin droplets with different volumes were dispensed at different locations and pressed to investigate air bubble formation. By varying volume of droplet and dispensing location, process conditions were found for minimum air bubble area.

  • PDF

주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구 (Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location)

  • 김민혁;지윤영;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.

고주파 삼각파 여자법을 사용한 실시간 슬러그 유동 측정용 전자기유량계 (A Real-Time Measurement of Slug Flow Using Electromagnetic Flowmeter with High frequency Triangular Excitation)

  • 안예찬;차재은;김무환
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1570-1577
    • /
    • 2002
  • In order to investigate the characteristics of two-phase slug flow, an electromagnetic flowmeter with 240Hz triangular AC excitation was designed and manufactured. The signals and noise from the flowmeter were obtained, and analyzed in comparison with the observations with a high speed CCD camera. The uncertainty of the flowmeter under single-phase flow was $\pm$ 2.24% in real-time. For two-phase slug flow, electromagnetic flowmeter provided real-time simultaneous measurements of the mean film velocity around Taylor bubble and the relative location and the length of the bubble. Besides, it is an easier and cheaper method for measuring mean film velocity than others such as photochromic dye activation method or particle image velocimetry.

선체주위 기포거동에 관한 기초적 연구 (A Basic Research of Air Bubble Locus around the Ship Hull)

  • 김호은;이영길
    • 대한조선학회논문집
    • /
    • 제37권4호
    • /
    • pp.48-55
    • /
    • 2000
  • 선박의 저항을 줄이기 위하여 발생시킨 기포의 거동을 알기 위해, 선체주위의 기포거동에 과한 기초적 연구를 수행하였다. 본 연구에서는 선체주위에 발생된 기포의 거동에 대하여, 기포의 크기와 발생위치를 변화시켜가며 수치계산 및 실험을 수행하여, 선체주위의 기포거동에 관한 특성을 연구하고자 하였다. 기포의 거동방정식은 기포의 부력을 고려한 Kawakita의 것을 사용하였다. 수치계산은 MAC(Marker And Cell)법을 기초로 한 유한차분법(Finite Difference Method)을 사용하였으며, 실험은 Series 60선형에 대하여 회류수조에서 수행되었다. 실험과 계산은 서로 비교하여 보았다.

  • PDF

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Effects of Gap Resistance and Failure Location on prompt Fission Gas Release from a Cladding Breach

  • Tak, Nam-Il;Chun, Moon-Hyun;Ahn, Hee-Jin;Park, Jong-Kil;Rhee, In-Hyoung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.184-189
    • /
    • 1997
  • A prompt fission gas release model incorporating the resistance to gas flow in the gap was developed and the effects of gap resistance and failure location on prompt fission gas release from the cladding breach were assessed. The process of prompt fission gas release from the plenum and gap into the coolant was modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The cumulative mass release fraction by the present model was calculated for the case of Young-Gwang 3 & 4 nuclear fuel rod as a typical example. The results showed that the release behavior of prompt fission gas with time was different from the frictionless model which has frequently been used in a simplified approach, and that the location of cladding failure was another key factor for the prompt fission gas release process due to the resistance in the gap.

  • PDF

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

발전소 수중방류구조 내 수평유공판 설치에 따른 거품발생 저감효과에 관한 실험적 연구 (Experimental Investigation on the Efficiency of Reducing Air Bubble Formation by Installing Horizontal Porous Plate in the Submerged Outlet Structure of Power Plant)

  • 오상호;오영민;강금석;김지영
    • 한국해안·해양공학회논문집
    • /
    • 제20권5호
    • /
    • pp.472-481
    • /
    • 2008
  • 이 연구에서는 보령화력발전소 방수로 수중방류구조에 대한 수리모형실험을 수행하여 수중방류구조 내 흐름 특성을 고찰하고, 수평 유공판 설치에 따른 거품저감 효과를 검토하였다. 수중방류구조 내 단면평균유속은 설계시 거품의 외해 유출 방지를 위해 고려한 목표값 1 m/s 이내에 분포하였다. 또한, 수중방류구조 내 2차 낙하 위치에 수평 유공판을 설치함에 따라 거품의 수중 최대관입깊이가 30~50% 감소함을 확인하였다. 특히, 2차 낙하 위치에 구멍의 크기가 20 cm 정도인 사각구멍형 유공판을 설치하고, 중앙부는 무공 구조로 제작하여 낙하 에너지를 소산시키게 될 경우, 가장 효과적으로 수중에 관입되는 거품 발생량을 저감시킬 수 있을 것으로 기대된다.

난류전단 흐름에서의 기포응집에 관한 수치모의: 2. 모형의 적용 (Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 2. Model Application)

  • 전경수
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1365-1373
    • /
    • 1994
  • 난류전단 흐름에서의 기포 크기분포를 예측하기 위하여 개발된 Monte-Carlo 모의모형을 실험실 크기의 문제에 적용하였다. 각종 모형 매개변수 및 물리적 변수들에 대한 민감도 분석을 수행하였으며, 실험 관측치와의 비교를 통하여 모형의 실제 적용성에 관하여 조사하였다. 공기와 물의 유량비 또는 마찰계수가 증가함에 따라 기포의 크기가 커지는 것으로 나타났다. 평균유속이 증가함에 따라 가포의 크기는 작아지지만, 폭기구간내 기포의 총표면적은 거의 일정함을 보였다. 모형의 종방향 거리증분에 따른 기포 크기분포의 변화는 거의 없었으며, 횡방향 거리중분을 크게 할수록 기포가 크거나 작은 쪽으로 치우쳐 중간정도의 크기를 갖는 기포의 수가 감소하였다. 기포의 크기분포는 그 초기분포 및 공기의 주입위치에 크게 영향을 받는 것으로 나타났다. 기포의 충돌과 응집을 구분하기 위하여 충돌효율을 도입하였다.

  • PDF