• Title/Summary/Keyword: Bubble Cavitation

Search Result 92, Processing Time 0.025 seconds

Estimation of Cavitation Bubble Distribution Using Multi-Frequency Acoustic Signals (다중 주파수를 이용한 캐비테이션 기포의 분포량 추정)

  • Kim, Dae-Uk;La, Hyoung-Sul;Choi, Jee-Woong;Na, Jung-Yul;Kang, Don-Hyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.198-207
    • /
    • 2009
  • Distribution of cavitation bubbles relative to change of the sound speed and attenuation in the water was estimated using acoustic signal from 20 to 300 kHz in two cases that cavitation bubbles exist and do not exist. To study generation and extinction property of cavitation bubble, bubble distribution was estimated in three cases: change of rotation speed (3000-4000 rpm), surface area of blade ($32-98\;mm^2$) and elapsed time (30-120 sec). As a result, the radii of the generated bubbles ranged from 10 to $60{\mu}m$, and bubble radius of $10-20{\mu}m$ and $20-30{\mu}m$ was accounted for 45 and 25% of the total number of cavitation bubbles, respectively. And generation bubble population correlated closely with the rotating speed of the blades but did not correlate with the surface area of blade. It was observed that 80% of total bubble population disappeared within 2 minutes. Finally, acoustic data of bubble distribution was compared with optical data.

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.

Analysis of bubble cavitation and control of cavitation noise of hydrofoils (기포 캐비테이션의 거동 해석 및 수중익 캐비테이션의 소음 제어)

  • 강관형;안종우;송인행;김기섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.335-341
    • /
    • 2001
  • The bubble cavitation and cloud cavitation are the major sources of cavitation-induced sound and vibration. A numerical method which predicts the trajectory and volume change of a cavity is developed, to predict the cavitation noise of a body. It is shown, by using the numerical method, that the cavitation inception and events rate is strongly dependent on the screening effect caused by the pressure gradient around a body, which is confirmed experimentally. Additionally, the effectiveness of a cavitation control method utilizing air injection is investigated experimentally. It is demonstrated that the noise level of the cloud cavitation can be significantly reduced by the air-injection method.

  • PDF

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory (소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석)

  • Park, Kwang-Kun;Seol, Han-Shin;Lee, Soo-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.

Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses (오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰)

  • Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.893-900
    • /
    • 2010
  • In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.

Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation (큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

Study on Micro-bubble Generation Characteristics in Venturi Cavitation using Laser Diffractometer (레이저 회절 측정기를 이용한 벤츄리 캐비테이션에서의 마이크로버블 발생 특성 연구)

  • Lim, Yun Gyu;Yang, Hae Jeong;Kim, Yung Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The use of micro bubbles in industrial fields has been increasing in the recent years., particularly micro-bubble sterilization and water purification effects. Various methods have been developed for the generation of micro-bubbles. Depending on the method of generating bubbles, the micro-bubbles can be roughly classified into saturation molding, cavitation and rotation flow types. The objective of this study was to use ventilated tube type as a method of generating micro-bubbles in order to purify large amount of water quality such as lakes and reservoirs. This method shows a difference in efficiency in which micro-bubbles are generated depending on the contact ratio of gas to liquid. The study also investigated the optimal gas liquid contact ratio by applying various orifice methods and investigated the optimum condition of micro-bubble generation by gas Based on this, a technology to develop a micro-bubble generator with a venturi type nozzle shape that has a high water purification effect was developed.

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Numerical Modeling of the Mathematical Model of Single Spherical Bubble (단일 구형 기포의 수학적 모델에 대한 수치적 해석 모델)

  • Kang, Dong-Keun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.731-738
    • /
    • 2010
  • Cavitation is described by formation and collapse of the bubbles in a liquid when the ambient pressure decreases. Formed bubbles grow and collapse by change of pressure, and when they collapse, shockwave by high pressure is generated. In general, bubble behavior can be described by Rayleigh-Plesset equation under adiabatic or isothermal condition and hence, phase shift by the pressure change in a bubble cannot be considered in the equation. In our study, a numerical model is developed from the mathematical model considering the phase shift from the previous study. In the developed numerical model, size of single spherical bubble is calculated by the change of mass calculated from the change of the ambient pressure in a liquid. The developed numerical model is verified by a case of liquid flow in a narrow channel.