• Title/Summary/Keyword: Bt toxin

Search Result 28, Processing Time 0.023 seconds

Expression of Bacillus thringiensis HD-1 gene in rhizobacteria Pseudomonas fluorescens KR164 (근권 길항세균 Pseudomonas fluorescens KR164에 Bacillus thuringiensis HD-1 유전자의 삽입과 발현)

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kang, Heun-Soo
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.227-231
    • /
    • 1992
  • The plasmids pSUPBT and pSUPBTR were constructed with a vector pSUP2021 and the BT toxin gene in the plasmid pES 1. The plasmids constructed were introduced into the antagonistic rhizobacteria P. fluorescens KR164 by conjugation and P. fluorescens having pSUPBT and pSUPBTR were named P. fluorescens KR164(pSUPBT)#2, KR164(pSUPBT)#3, KR164(pSUPBTR)#2 and KR164(pSUPBTR)#3, respectively. The BT toxin gene were identified in all transformants by Southern hybridization and the final product of BT toxin gene was identified only in P. fluorescens KR164(pSUPBTR)#3 by SDS-PAGE. This crystal toxin protein were also observed in electron microscopy.

  • PDF

Isolation and Characteristics of Bacillus thuringiensis Strain BtTH109 which is Toxi against Root-Knot Nematode Meloidogyne incognita (토마토 뿌리혹선충 Meloidogyne incognita에 치사력이 있는 Bacillus thuuingiensis Bt TH109 균주의 분리 및 특성)

  • 이광배;김광현;김영희
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.227-232
    • /
    • 1994
  • In order to microbially control root-knot nematode(Meloidogyne incognita) in tomato, a strain BtTH109 of Bacillus thuringiensis producing root-knot nematocidal toxin was isolated. The strain BtTH109 was identified B. thuringiensis subsp. indiana(serotype 16) based on flagella antigenicity, biochemical properties, and morphological charcateristics. The strain BtTH109 have extracellularly produced a root-knot nematocidal toxin, which was very toxic against not only egghatch but also the 2nd-nematode larva of root-knot nematode in vitro.

  • PDF

Transfer of Bacillus thuringiensis toxin gene into Bacillus subtilis and its inoculation effects (식물 생장촉진 미생물의 외부 유전자 도입과 그 접종효과)

  • Rhee, Young-Hwan;Kim, Kwang-Sik;Kim, Yong-Woong;Kim, Yeong-Yil
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.361-366
    • /
    • 1992
  • The antagonistic bacteria, showing distinguished effect against Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphares of horticultural plants and identified as Bacillus subtilis. The strains were studied for their chracteristics of biochemistry, physiology, antagonistic effect against plant pathogenic fungi, and growth promoting effect on horticultural plants. The Bacillus thuringiensis(BT) HD-1 toxin gene was introduced into these B. subtilis. The BT toxin genes on chromosome of the bacteria were identified by southern blotting, but its proteins were not detected by SDS-PAGE. These transformed bacteria showed growth promoting effect and showed also insecticidal and antagonistic effects against Bombix mori and fungi F. oxysporum and R. solani but not against nematode Bursaphelenchus xylophilus.

  • PDF

Production of Hepatotoxin by the Cyanobacterium Scytonema sp. Strain BT 23

  • Ashok, Kumar;Singh, D.P.;Tyagi, M.B.;Kumar, Arvind;Prasuna, E.G.;Thakur, J.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.375-380
    • /
    • 2000
  • The preliminary screening of several cyanobacteria, using mice bioassay, reveale the production of a hepatotoxin by the cyanobacterium Scytonema sp. strain BT 23 isolated from soil. An intraperitoneal injection of the crude toxin (LD50 56 mg/kg body wt) from this strain caused the death of the mice within 40 min, and the anmals showed slinical signs of mice within 40 min, and the animals showed clinical signs of hepatotoxicity. The toxin was purified and partially characterized. The active fraction appears to be nonpolar in nature and shows absorption peaks at 240 and 285 nm. The purified toxin had an LD50 of TEX>$100<\mu\textrm{g}/kg$ body wt and the test mice died within 40 min of toxin administration. The toxin-treated mice showed a 1.65-fold increase in liver weight at 40 min and the liver color chnged to dark red due to intrahepatic hemorrhage and pooling of blood. Furthermore, the administration of the toxin to test mice induced a 2.58, 2.63, and 2.30-fold increse in the activity of the serum enzymes alanine aminotransferase, lactate dehydrogenase, and alkaline phosphatase, respectively. Further experiments with the 14C-labeled toxin revealed a maximum accumulation of the toxin in the liver. The clinical symptoms in the mice were similar to those produced by microcystin-L.R. These results suggest that hepatotoxins may also be produced in non bloom-forming planktonic cyanobacteria.

  • PDF

Computational Tridimensional Protein Modeling of Cry1Ab19 Toxin from Bacillus thuringiensis BtX-2

  • Kashyap, S.;Singh, B.D.;Amla, D.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.788-792
    • /
    • 2012
  • We report the computational structural simulation of the Cry1Ab19 toxin molecule from B. thuringiensis BtX-2 based on the structure of Cry1Aa1 deduced by x-ray diffraction. Validation results showed that 93.5% of modeled residues are folded in a favorable orientation with a total energy Z-score of -8.32, and the constructed model has an RMSD of only $1.13{\AA}$. The major differences in the presented model are longer loop lengths and shortened sheet components. The overall result supports the hierarchical three-domain structural hypothesis of Cry toxins and will help in better understanding the structural variation within the Cry toxin family along with facilitating the design of domain-swapping experiments aimed at improving the toxicity of native toxins.

Use of a botulinum toxin A in dentistry and oral and maxillofacial surgery

  • Park, Kyung-Soo;Lee, Chi-Heun;Lee, Jung-Woo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.151-157
    • /
    • 2016
  • Botulinum toxin (BT) was the first toxin to be used in the history of human medicine. Among the eight known serotypes of this toxin, those currently used in medicine are types A and B. This review article mainly discusses BT type A (BTA) because it is usually used in dentistry including dental anesthesiology and oral and maxillofacial surgery. BTA has been used mainly in the treatment of temporomandibular joint disorder (TMD) and hypertrophy and hyperactivity of the masticatory muscles, along with being a therapeutic option to relieve pain and help in functional recovery from dental and oral and maxillofacial surgery. However, it is currently used broadly for cosmetic purposes such as reducing facial wrinkles and asymmetry. Although the therapeutic effect of BTA is temporary and relatively safe, it is essential to have knowledge about related anatomy, as well as the systemic and local adverse effects of medications that are applied to the face.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

A Technique to Enhance Bacillus thuringiensis Spectrum and Control Efficacy Using Cry Toxin Mixture and Immunosuppressant (Cry 독소단백질 혼합과 면역억제제 첨가를 통한 Bacillus thuringiensis 살충제 적용범위 및 방제력 증진 기술)

  • Eom, Seonghyeon;Park, Youngjin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 2014
  • An entomopathogenic bacterium, Bacillus thuringiensis (Bt), can sporulate along with production of insecticidal Cry toxins. Bt Cry toxins exhibit relatively narrow spectrum to target insects due to their specific interactions with midgut receptors. This study designed several strategies to enhance Bt efficacy in target insect spectrum and insecticidal activity. Four Cry toxins were purified from four different Bt strains and showed relatively narrow target insect spectrum. However, the Cry mixtures significantly expanded their target insect spectra. The additional effect of baculovirus to Cry toxin was tested with recombinant baculoviruses expressing Cry1Ac or Cry1Ca. However, the baculovirus was little effective to expand target insect spectrum. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.

A Technique to Enhance Insecticidal Efficacy Using Bt Cry Toxin Mixture and Eicosanoid Biosynthesis Inhibitor (혼합 비티 독소단백질과 아이코사노이드 생합성 억제자를 이용한 약효 증진 기술)

  • Eom, Seonghyeon;Park, Youngjin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2015
  • To enhance Bacillus thuringiensis (Bt) efficacy, four Cry toxins were purified from four different Bt strains and assessed in their combined efficacy. The Cry mixtures significantly expanded their target insect spectra. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.