Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06034

Computational Tridimensional Protein Modeling of Cry1Ab19 Toxin from Bacillus thuringiensis BtX-2  

Kashyap, S. (National Bureau of Agriculturally Important Microorganisms (ICAR))
Singh, B.D. (School of Biotechnology, Faculty of Science, Banaras Hindu University)
Amla, D.V. (Molecular Biology and Genetic Engineering Division, National Botanical Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.6, 2012 , pp. 788-792 More about this Journal
Abstract
We report the computational structural simulation of the Cry1Ab19 toxin molecule from B. thuringiensis BtX-2 based on the structure of Cry1Aa1 deduced by x-ray diffraction. Validation results showed that 93.5% of modeled residues are folded in a favorable orientation with a total energy Z-score of -8.32, and the constructed model has an RMSD of only $1.13{\AA}$. The major differences in the presented model are longer loop lengths and shortened sheet components. The overall result supports the hierarchical three-domain structural hypothesis of Cry toxins and will help in better understanding the structural variation within the Cry toxin family along with facilitating the design of domain-swapping experiments aimed at improving the toxicity of native toxins.
Keywords
Three-dimensional structure; homology modeling; Cry1Ab19; Bacillus thuringiensis BtX-2; third party annotation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boonserm, P., M. Mo, C. Angsuthanasombat, and J. Lescar. 2006. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 188: 3391-3401.   DOI   ScienceOn
2 Boonserm, P., P. Davis, D. J. Ellar, and J. Li. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348: 363-382.   DOI   ScienceOn
3 Chen, X. J., M. K. Lee, and D. H. Dean. 1993. Site-directed mutations in a highly conserved region of Bacillus thuringiensis ${\delta}$-endotoxin affect inhibition of short circuit current across Bombyx mori midgets. Proc. Natl. Acad. Sci. USA 90: 9041-9045.   DOI   ScienceOn
4 Derbyshire, D. J., D. J. Ellar, and J. Li. 2001. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D 57: 1938-1944.   DOI   ScienceOn
5 Galitsky, N., V. Cody, A. Wojtczak, D. Ghosh, J. R. Luft, W. Pangborn, and L. English. 2001. Structure of the insecticidal bacterial ${\delta}$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D 57: 1101-1109.   DOI   ScienceOn
6 Gazit, E., P. La Rocca, M. S. P. Sansom, and Y. Shai. 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis ${\delta}$-endotoxin are consistent with an "umbrella-like" structure of the pore. Proc. Natl. Acad. Sci. USA 95: 12289-12294.   DOI   ScienceOn
7 Gutierrez, P., O. Alzate, and S. A. Orduz. 2001. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry11Bb toxin deduced by homology modeling. Mem. Inst. Oswaldo Cruz 96: 357-364.
8 Hofmann, C., H. Vanderbruggen, H. Hofte, and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc. Natl. Acad. Sci. USA 85: 7844-7848.   DOI   ScienceOn
9 Knowles, B. H. and D. J. Ellar. 1987. Colloid osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificities. Biochim. Biophys. Acta 924: 509-518.   DOI   ScienceOn
10 Kumar, A. S. M. and A. I. Aronson. 1999. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis ${\delta}$-endotoxin. J. Bacteriol. 181: 6103-6107.
11 Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK: A program to check the stereo chemical quality of protein structures. J. Appl. Cryst. 26: 283-291.   DOI   ScienceOn
12 Li, J., J. Carroll, and D. J. Ellar. 1991. Crystal structures of insecticidal ${\delta}$-endotoxin from Bacillus thuringiensis at 2.5 ${\AA}$ resolutions. Nature 353: 815-821.   DOI   ScienceOn
13 Lovell, S. C., I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, et al. 2002. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins 50: 437-450
14 Min, Z. X., X. L. Qui, D. X. Zhi, and W. F. Xiang. 2009. The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications. Protein J. 28: 104-110.   DOI   ScienceOn
15 Morse, R. J., T. Yamamoto, and R. M. Stroud. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-417.   DOI   ScienceOn
16 Xia, L. Q., X. M. Zhao, X. Z. Ding, F. X. Wang, and Y. J. Sun. 2008. The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. J. Mol. Model. 14: 843-848.   DOI   ScienceOn
17 Sali, A., L. Potterton, F. Yuan, H. van Vlijmen and M. Karplus. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318-326.   DOI   ScienceOn
18 Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus, J. Baum, J. Feitelson, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 772-806.
19 Schwartz, J. L., L. Potvin, X. J. Chen, R. Brousseau, R. Laprade, and D. H. Dean. 1997. Single-site mutations in the conserved alternating-arginine region affect ion channels formed by CryIAa, a Bacillus thuringiensis toxin. Appl. Environ. Microbiol. 63: 3978-3984.