• Title/Summary/Keyword: Brushless direct-current (BLDC) motor

Search Result 48, Processing Time 0.028 seconds

Optimal Current Control Method of BLDC Motor Utilizing Maximum Torque Point

  • Park, Chang-Seok;Jang, Jung-Hoon;Jung, Tae-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes an optimal current control method for improving efficiency of Brushless Direct Current (BLDC) motor. The proposed optimal current control method is based on the maximum torque point analysis of Finite Element Analysis (FEA). The proposed method can increase the effective voltage at the maximum torque point of BLDC motor and increase the output torque per unit current to increase the efficiency. In order to verify the proposed optimal current control method, have developed the prototype of a 50 [W] class motor drive and experimented by 20 [W] motor using the dynamometer set. This was verified.

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

An IPM(Intelligent Power Module) performance evaluation system for the driving of a multi-pole BLDC motor (다극 BLDC 전동기 구동을 위한 IPM(Intelligent Power Module) 성능 평가 시스템)

  • Min, Bung-kil;Kunn, Young;Hwang, Min-kyu;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.686-689
    • /
    • 2014
  • This Paper is about the study that use the IPM(Intelligent Power Module) which is a integrated switching module to drive inverter gates for driving of a multi-pole BLDC(Brushless Direct Current) motors. When designing a inverter using the various manufacturers IPM, it suggests a electronic circuit system to evaluate the electrical and logical characteristics of the IPM with various brands.

  • PDF

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Position and Speed Control of the BLDC Motor based on the Back-stepping(Gain design) (백스텝핑을 기반으로 하는 BLDC 전동기의 위치 및 속도제어(이득 설정))

  • Lee, Seung;Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.403-411
    • /
    • 2015
  • In this paper, we propose a design method for the position and speed controller, current control of a Brushless Direct Current(BLDC) motor using back-stepping design techniques. Further, to stabilize the whole system, and proposes a method for setting the appropriate gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the position, velocity and current reference. Since the simulation results of the steady state error is within 1%, we were able to show the usefulness of the tracking performance of the proposed controller.

A Speed Control of BLDC Motor using Adaptive Back stepping Technique (BLDC motor의 적응백스텝핑 속도제어)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.899-905
    • /
    • 2014
  • In this paper, we propose a method that can be used to back-stepping controller design for speed control of Brushless Direct Current (BLDC) motor. First, back-stepping controller is designed with load torque estimator. The estimator is included to adapt to the variation of load torque in real time. Finally, the proposed controller is tested through experiment with a 120W BLDC motor for the angular velocity reference tracking performance and load torque volatility estimation. The simulation result verifies the performance of the proposed controller.

The Position and Speed Control of the BLDC Motor Using the Disturbance Observer (외란 관측기를 이용한 BLDCM의 위치 및 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.899-906
    • /
    • 2020
  • Motor control requires robust and precise control performance even in the presence of errors in the mathematical model of the motor and disturbances acting on the motor. For robust and precise control, a disturbance observer was designed to estimate the load fluctuation and applied to a back-stepping controller designed as a nominal system. The control performance of the designed system was verified by applying it to the 120 [W] Brushless Direct Current Motor. As a result of the position control and speed control, the disturbance is overcome from the steady state error converges to zero, and asymptotically stable results can be confirmed.