• Title/Summary/Keyword: Broadcasting Signal Simulation

Search Result 237, Processing Time 0.021 seconds

Performance Improvement of MIMO-OFDMA system with beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • In this paper, we propose the adaptive beamforming algorithm for the MIMO (Multi-Input Multi-Out)-OFDMA(Orthogonal Frequency Division Multiplexing Access)system to improve the performance. The performance of MIMO-OFDMA systems is greatly decreased in the wireless channel environment with multiusers, because the received signals are much distorted by a cochannel interference (CCI) during the space-time decoding. The proposed approach can track the DOA of each signal from the multiple antennas of the desired user without being greatly dependent on the impinging angle. And beams are directed toward the multiple transmitters of the desired user while null beams are directed toward interference directions. Therefore, we can can effectively cancel CCI and mitigate the impairment of delay spread while preserving the STC(space time code) diversity. BER performance improvement is investigated through computer simulation by applying the proposed approach to MIMO-OFDMA system in a multipath fading channel with CCI.

Performance of MIMO-OFDMA system combining power controlling algorithm with multi-beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2022
  • In this paper, we propose the new technique adopting power control to MIMO(multi-input multi-output)-OFDMA(orthogonal frequency division multiplexing Access) system with multi-beamformer. The proposed power controlling algorithm for MIMO-OFDMA allocates the transmitting power of each subcarrier based on the CSI(channel state information) and the interference signal. CSI is feedback from base station to mobile station to decide the transmitting power of each subcarrier. Through the proposed technique, we can control iteratively the transmitting power and update the weight of beamformer simultaneously. Therefore, the SNIR of each subcarrier become to converge the target SNIR and the beam is formed toward the desired direction. And the performance of MIMO-OFDMA system with the proposed approach is very improved. The improvement in bit error rate is investigated through computer simulation of a MIMO-OFDMA system with the proposed approach.

Current-Mode Serial-to-Parallel and Parallel-to-Serial Converter for Current-Mode OFDM FFT LSI (전류모드 OFDM FFT LSI를 위한 전류모드 직병렬/병직렬 변환기)

  • Park, Yong-Woon;Min, Jun-Gi;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • OFDM is used for achieving a high-speed data transmission in mobile wireless communication systems. Conventionally, fast Fourier transform that is the main signal processing of OFDM is implemented using digital signal processing. The DSP FFT LSI requires large power consumption. Current-mode FFT LSI with analog signal processing is one of the best solutions for high speed and low power consumption. However, for the operation of current-mode FFT LSI that has the structure of parallel-input and parallel-output, current-mode serial-to-parallel and parallel-to-serial converter are indispensable. We propose a novel current-mode SPC and PSC and full chip simulation results agree with experimental data. The proposed current-mode SPC and PSC promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

  • PDF

A Study on Performance Analysis for Terrestrial Cloud Transmission Systems (지상파 클라우드 방송 시스템의 성능 분석 연구)

  • Kim, Jeongchang;Park, Sung Ik;Kim, Heung Mook
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2015
  • In this paper, we model the interference plus noise signal for terrestrial cloud transmission systems and present bit error rate (BER) performances. Since terrestrial cloud transmission systems experience co-channel interference from one or more transmitters, they have to operate under a negative signal-to-interference plus noise ratio (SINR) region. The interference plus noise signal can be modeled as Gaussian random variable under the required SINR region and we observe the BER performance of the cloud transmission system using the derived model. Also, we propose an improved channel estimation scheme by averaging the channel estimates based on least square based interpolation scheme. Simulation results show that the cloud transmission system can operate under negative SINR region using the proposed channel estimation scheme.

A Study on Frequency Offset Compensation using 2-Phase Characteristic of Beacon Signal modulated by Satellite (위성 변조 비콘 신호의 2위상 특성을 이용한 주파수 오프셋 보상방법에 대한 연구)

  • Choi, Chul-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.97-103
    • /
    • 2018
  • In satellite communication, modulated beacon signal is spreaded by gold sequence and the modulated beacon is transmitted via linear phase modulation. Due to the difference in characteristics of the satellite and the receiver on the ground, frequency offset (FO) occurs. An existing modulated beacon receiver is a method of synchronizing the frequency of a modulated beacon signal using FFT(Fast Fourier Transform), which not only increases the delay and complexity in terms of system implementation but also has a separate circuit for compensating the phase difference due to FO and phase offset from FFT points. In order to overcome this problem, this paper proposes and analyzes a scheme for compensating and demodulating the coarse FO and phase offset at one time using the 2-phase shaped characteristics of the modulated beacon signal. Also, through the simulation, the modulation index suitable for the proposed method is analyzed and the appropriate cumulative number is also analyzed.

A Performance Evaluation of Constellation Matching-MMA Adaptive Equalization Algorithm in QAM System (QAM 시스템에서 Constellation Matching-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This paper relates with the eualization performance of Constellation Matching-MMA (CM-MMA) in order to the consists of optimum receiver for the minimization of intersymbol interference and additive noise effects that is occurs in the nonlinear communication channel. The error signal were obtained that combines the Constellation Matching technique that inserts the zero point between the signal point of equalizer for improving the residual isi and convergence speed compared to the currently used MMA algorithm. In the initial state of adaptive equalization, it depends on the MMA characteristics mainly. And in the steady state, it depends on the CM characteristics mainly. In order to analyzing the equalization performance, the output signal constellation, residual isi, maximum distortion, MSE and SER were applied, then it were compared with the present MMA algorithm. As a result of computer simulation, the CM-MMA has more better performance in the every performance index, and it was also confirmed that the constellation matching effect can be obtained in the greater than 20dB signal to noise ratio.

Performance Evaluation of AV-MMA Adaptive Equalization Algorithm in high order QAM System (고차 QAM 시스템에서 AV-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.109-114
    • /
    • 2015
  • This paper relates with the eualization performance of Adaptive Varying-MMA (AV-MMA) in order to the minimization of intersymbol interference that is occurs in the nonlinear communication channel. In order to obtain the error signal in the tap coefficient updating process of adaptive equalization algorithm, the present MMA uses the constant modulus. But in AV-MMA, the adaptively varying modulus are used according to the equalizer output, it is possible to reduce the error signal and possbile to improving the overall equalization performance. In order to improved equalization performance of the AV-MMA in the 64-QAM signal, the present MMA performance were compared. For this, the output signal constellation of equalizer, residual isi, maximum distortion, MSE and SER curves are applied. As a result of computer simulation, the AV-MMA has more better performance in the every performance index than MMA, and the SER performance shows that it has more robustness in high SNR environmnet compared to MMA.

Performance Comparison of the CCA Adaptive Equalization Algorithm based on Compact Slice Weighting Values in 16-QAM Signal (16-QAM 신호에서 Compact Slice 가중치에 의한 CCA 적응 등화 알고리즘의 성능 비교)

  • Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • This paper compare the performance of CCA (Compact Constellation Algorithm) adaptive equalization algorithm by effect of the compact slice weighting value for minimization of the intersymbol interference in the communication channel. The CCA combines the conventional DDA and RCA algorithm, it uses the constant modulus of the transmission signal and the considering the output of decision device by the power of compact slice weighting value in order to improving the initial convergence characteristics and the equalization noise by misadjustment in the steady state. In this process, it is confirmed by computer simulation that the compact slice weight affects the performance of CCA adaptive equalization algorithm. The performance index includes the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER according to the signal and noise power ratio at the channel is used. As a result of computer, it shows that the large weighting value gives more good in every performance index. But in SER performance, it is known that the small values gives more good in low SNR and the large values gives more good in high SNR.

Joint Transceiver Design for SWIPT in MIMO Interference Channel (MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we consider K-user multiple-input multiple-output (MIMO) interference channel and present a transceiver design for simultaneous wireless information and power transfer (SWIPT) systems. In addition, we consider a SWIPT system where an information decoding receiver and an energy harvesting receiver are co-located at the same receiver. In the proposed scheme, signal-to-leakage plus noise ratio (SLNR) is used as a cost function and a transceiver is designed to satisfy the threshold of the harvested energy. More specifically, transmitter precoding vector, receiver filter vector, and power spitting factor are simultaneously designed to maximize SLNR with a constraint on the harvested energy. Through computer simulation, we compare the signal-to-interference plus noise ratio (SINR) performance of the proposed and conventional schemes. When a special condition among the number of transmit antennas, receive antennas, and users is satisfied, the proposed scheme showed better SINR performance than the conventional scheme at low signal-to-noise ratio (SNR) range. Also, when the condition is not satisfied, the proposed scheme showed better performance than the conventional scheme at all SNR range.

Performance Evaluation of SE-MMA Adaptive Equalization Algorithm with Varying Step Size based on Error Signal's Nonlinear Transform (오차 신호의 비선형 변환을 이용한 Varying Step Size 방식의 SE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • This paper related with the VSS_SE-MMA (Varying Step Size_Signed Error-MMA) which possible to improving the equalization performance that employing the varying adaptive step size based on the nonlinearities of error signal of SE-MMA (Signed Error-MMA), compensates the intersymbol interference by distortion occurs at the communication channel, in the transmitting the spectral efficient nonconstant modulus signal such as 16-QAM. The SE-MMA appeared to the reducing the computational arithematic operation using the polarity of error signal in the updating the tap coefficient of present MMA adaptive equalizer, but have a problem of equalization performance degradation. The VSS_SE-MMA improves the problem of such SE-MMA, using the varying step size consider the error signal in the update the adaptive equalizer tap coefficient, and its improved performance were confirmed by simulation. For this, the output signal constellation of equalizer, the residual isi and maximum distortion, MSE and SER were applied. As a result of computer simulation, it was confirmed that the VSS_SE-MMA algorithm has nearly same in convergence speed and has more good performance in every performance index at the steady state.