• Title/Summary/Keyword: Brittle material

Search Result 478, Processing Time 0.031 seconds

The high-rate brittle microplane concrete model: Part II: application to projectile perforation of concrete slabs

  • Frank, Andreas O.;Adley, Mark D.;Danielson, Kent T.;McDevitt, Henry S. Jr.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.311-325
    • /
    • 2012
  • In this paper, we examine the behavior of the High-Rate Brittle Microplane (HRBM) concrete model based on a series of penetration experiments. These experiments were conducted with three different slab thicknesses (127, 216 and 254 mm) that provided a significant challenge for the numerical simulations. The 127 mm slab provided little resistance, the 216 mm slab provided nominal resistance and the 254 mm slab approached the perforation limit thickness of the projectile. These experiments provide a good baseline for evaluating material models since they have been shown to be extremely challenging; in fact, we have not encountered many material models that can provide quantitatively predictive results in terms of both projectile exit velocity and material damage. In a companion paper, we described the HRBM material model and its fit to various quasi-static material property data for WES-5000 concrete. In this paper, we show that, when adequately fit to these quasi-static data, the HRBM model does not have significant predictive capabilities, even though the quasi-static material fit may be exceptional. This was attributed to the rate-dependent response of the material. After various rate effects were introduced into the HRBM model, the quantitative predictive nature of the calculations dramatically increased. Unfortunately, not much rate-dependent material property data are in the literature; hence, accurate incorporation of rate effects into material models is difficult. Nonetheless, it seems that rate effects may be critical in obtaining an accurate response for concrete during projectile perforation events.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

Prediction of Material Removal and Surface Roughness in Powder Blasting using Neural Network and Response Surface Analysis (신경회로망 및 반응표면분석법을 이용한 파우더 블라스팅시의 표면거칠기 및 재료제거량 예측)

  • Park, Dong-Sam;Yoo, Woo-Sik;Jin, Quan-Qia;Seong, Eun-Je;Han, Jin-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Powder blasting technique has been considered one of the most appropriate micro machining methods for hard and brittle materials, since the productivity is high and the heat layers caused by material removal are very thin. Recent development of special purposed parts, such as the parts for semiconductor processing, the parts for LCD, sensors for micro machine fabrication and so on, has been expanded. Thus, it is essential to develop powder blasting technologies for micromachining of hard and brittle materials such as glass, ceramics and so on. In this paper, the characteristics of powder blasted glass surface were tested under various blasting parameters. Finally, we proposed a predictive model for powder blasting process using the neural network and the response surface method. Detail analysis of the simulation results is carried out and the performance of two predictive models is compared.

  • PDF

THERMAL SHOCK FRACTURE OF SILICON CARBIDE AND ITS APPLICATION TO LWR FUEL CLADDING PERFORMANCE DURING REFLOOD

  • Lee, Youho;Mckrell, Thomas J.;Kazimi, Mujid S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.811-820
    • /
    • 2013
  • SiC has been under investigation as a potential cladding for LWR fuel, due to its high melting point and drastically reduced chemical reactivity with liquid water, and steam at high temperatures. As SiC is a brittle material its behavior during the reflood phase of a Loss of Coolant Accident (LOCA) is another important aspect of SiC that must be examined as part of the feasibility assessment for its application to LWR fuel rods. In this study, an experimental assessment of thermal shock performance of a monolithic alpha phase SiC tube was conducted by quenching the material from high temperature (up to $1200^{\circ}C$) into room temperature water. Post-quenching assessment was carried out by a Scanning Electron Microscopy (SEM) image analysis to characterize fractures in the material. This paper assesses the effects of pre-existing pores on SiC cladding brittle fracture and crack development/propagation during the reflood phase. Proper extension of these guidelines to an SiC/SiC ceramic matrix composite (CMC) cladding design is discussed.

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism (취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석)

  • Sin, Hyeong-Seop;Kim, Jin-Han;O, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

The Signal Characteristics from Crack of Brittle Materials by Vickers Load (비커스 압입 하중에 의한 취성재료의 균열 신호특성)

  • Nam, Ki-Woo;Kim, Hyun-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • we analyzed acoustic emission signals obtained from three kinds of brittle materials under compression load by Vickers hardness tester. The results obtained can be summarized as follows; The signal in each material could be divided into three signal based on the properties of load. All specimens were not detected acoustic emission signals in stage II which was load constant region., and were detected in stage I and stage III. Glass was detected high amplitude signals in stage III. $Al_2O_3\;and\;Al_2O_3/Sic$ were detected high amplitude signals in stage I.

Impact Damage on Brittle Materials with Small Spheres (I) (취성재료의 소구충돌에 의한 충격손상 (I))

  • U, Su-Chang;Kim, Mun-Saeng;Sin, Hyeong-Seop;Lee, Hyeon-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.93-100
    • /
    • 2001
  • Brittle materials are very weak for impact because of typical characteristics which happen to be easily fractured with low fracture toughness and crack sensitivity. When brittle materials are subjected to impact due to small spheres, high contact pressure is occurred to impact surface and then local damage on specimen is developed, since there are little plastic deformations due to contact pressure compared to metals. This local damage is a dangerous factor which gives rise to final fracture of structures. In this research, the crack propagation process of soda lime glass by impact of small sphere is explained and the effects of the constraint conditions of impact spheres and materials for the material damage were studied by using soda-lime glass. that is the effects for the materials and sizes of impact ball, thickness of specimen and residual strength. Especially, this research has focused on the damage behavior of ring crack, cone crack and several kinds of cracks.

  • PDF

The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials (취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향)

  • Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF