• 제목/요약/키워드: Brittle material

검색결과 478건 처리시간 0.031초

철도차량 설계를 위한 A16005 알루미늄 판재의 마찰교반용접(FSW)과 MIG 용접부의 피로 특성 비교 연구 (Comparative Study on the Fatigue Properties of FSW and MIG Joints of A16005 Sheets to Design Railway Vehicles)

  • 최원두;고준빈;구기영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.653-659
    • /
    • 2010
  • Friction stir welding results in low distortion and high joint strength compared with other welding procedures, and is able to join all aluminium alloys that are not considered as virtually weldable with classical liquid state techniques. The comparative study on high cycle fatigue properties between A16005-T6 friction stir welds and MIG weld joints have been performed and fracture mechanisms for the fatigue specimens were investigated. Although mechanical properties are lower than the corresponding base material, FSW joints of A16005-T6 become higher at tensile and fatigue strength in comparison with the traditional fusion weld(MIG). The fracture surfaces of FSW and MIG fatigue specimens cleary show different aspects of the fracture morphology. MIG weldments were characterized by voids and cleavage(brittle fracture) but FSW specimens showed the presence of ductile fracture surface.

$Si_3N_4$-BN계 가공성 세라믹스의 마이크로 홀 가공특성에 관한 연구 (A Study on the Micro Hole Drilling Characteristics of $Si_3N_4$-BN Based Machinable Ceramics)

  • 김동우;조명우;조원승;이응숙;이재형
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.48-56
    • /
    • 2004
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining mechanism is characterized by cracking and brittle fracture. In this paper, to give good machinability to the ceramics, h-BN powders are added to $Si_3N_4$, by volume of 20, 25 and 30%. And the machinability of the produced ceramics is tested using micro drilling system. Through required experimental works, it is shown that the micro drilling machinability is varied along with the volumetric percentage of h-BN powders. Also, it is verified that the obtained results can be used to develop new machinable ceramics of good material properties and machinability.

LMC로 덧씌우기된 RC보의 비선형 휨 해석 (Nonlinear Flexural Analysis of RC Beam Overlayed by LMC)

  • 김성환;김동호;최성용;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.61-64
    • /
    • 2005
  • Recently to repair the structure of deteriorated concrete, LMC rehabilitation method is introduced. however, this method has the possible risks of brittle failure depending on bond performance of the interface. the prediction of interfacial behavior becomes essential to protect the failure. all of the studies which have been done about this field are only about material property such as strength, durability, bond. there is not enough data and studies about structural behavior and numerical analysis. therefore, in this study A flexural nonlinear analysis model of ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The parameter study showed that overlay thickness was a main influencing factor to the behavior of RC beam overlayed by LMC.

  • PDF

고강도 콘크리트의 취도계수에 관한 실험적 연구 (An experimental study on the fragility factor of high strength concrete)

  • 김희두;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

신경회로망에 의한 분사가공공정의 표면거칠기 및 재료제거량 예측에 관한연구 (A Study on the prediction of Surface Roughness and Material Removal in Powder Blasting using Neural Network)

  • 김권흡;유우식;박동삼
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1350-1356
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint or scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. In this paper, The surface characteristics of powder blasted glass surface were tested under different blasting parameter. Finally, we proposed a predictive model for powder blasting process using a neural network. A detailed analysis of the simulation results has been carried out and compared with experimental results.

  • PDF

볼 충격을 받는 유리의 콘크랙형성에 대한 경계조건의 영향 (The Effects of Boundary Condition in Cone Crack Formation of Soda-lime Glass by Ball Impact)

  • 김문생;허진;이현철;김호종
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.981-986
    • /
    • 2003
  • In order to investigate the possibility of processing of brittle material by ball impact, the effects of boundary conditions about impact damage of soda-lime glass by small spheres were evaluated experimentally. It was investigated that crack appearance developed in soda-lime glass with boundary conditions of without sealing, single-sealing and double-sealing by impact velocity. The double-sealing was most effective in the development of perfect cone than other boundary condition. In case of double-sealing condition, PVC and Polyurethane sealing were more effective in producing a perfect cone formation than other sealing materials. The impact velocity range over which perfect cones were formed was influenced by both the contact area and diameter of impact particle.

3차원 유한요소해석을 이용한 나노인덴테이션 공정에서의 소재거동해석 및 실험적 검증 (Analysis of Material Deformation Behavior in Nanoindentation Process by using 3D Finite Element Analysis and its Experimental Verification)

  • 이정우;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1174-1177
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic recover and pile-up was proposed. The indenter was modeled a 3D rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

혼합균열모델을 적응한 콘크리트 파괴의 유한요소해석 (Finite Element Analysis on Concrete Fracture using Homogenized Crack Model)

  • 송하원;방춘석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 2003
  • Since quasi-brittle material like concrete shows strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this study, a homogenized crack model which overcomes the drawback and considers rate discontinuity in the constitutive equation is proposed for modeling of cracking in concrete and its propagation in strain softening regime. Then, a series of finite element analysis of the concrete under various loading conditions has been performed. From comparison of analysis results with experimental data, it is shown that failure behavior due to localized cracking of concrete under both compressive loading condition and tensile loading condition is well predicted by the homogenized crack model.

  • PDF

콘크리트 구속 조건의 강도 증진 영향 연구 (Increasing effect of concrete strength by confined conditions)

  • 임석빈;한상윤;강영종;강진욱
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.361-371
    • /
    • 2005
  • The confined concrete subjected multi-axial stresses have been known as the fact it increases strength of concrete significantly compared with unconfined concrete. Many researchers have studied in confining effects of concrete, and now are studying in many fields. Although many researches about confined concrete using FRP have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. To investigate the influence of concrete strength and ductility increased by confining stiffness in steel, this study was tested and compared with 51 specimens confined by different shapes and thicknesses of steel tube. This test verified the increasement of strength and ductility in confined concrete. Also, analyzing the experimental data by regression method, this study provides stress-strain model about CSS and R4S considering effect of confinement stiffness on the stress-strain relations of concrete.

  • PDF