• Title/Summary/Keyword: Brittle fracture

Search Result 666, Processing Time 0.037 seconds

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon (질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동)

  • Lee, S.Y.;Kim, B.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

Study on Fracture Behavior of Mild Steel Under Cryogenic Condition (연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구)

  • Choi, Sung Woong;Lee, Woo IL
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.62-66
    • /
    • 2015
  • Considering for plants and structure under extreme conditions is required for the successful design, especially temperature and pressure. The ductile-brittle transition temperature (DBTT) for the materials under extreme condition needs to be considered. In this study, A-grade mild steel for the LNG carrier and offshore plant was examined by performing low-temperature Charpy V-notch (CVN) impact tests to investigate DBTT and the fracture toughness. The absorbed energy decreased gradually with the experimental temperature, which showed an upper-shelf energy region, lower shelf energy region, and transition temperature indicating DBTT. In addition, the fracture surface morphologies of the mild steels indicated ductile fractures at the upper-shelf energy level, with wide and large-sized dimples, whereas a brittle fracture surface, where was observed at the lower-shelf energy level, with both large and small cleavage facets. Based on the experimental results, ductile brittle transition temperature was estimated in about $-60^{\circ}C$.

Alumina Ceramics Reinforced by Ni-coated Chopped Alumina Fiber

  • Kim, Hai-Doo;Lee, Kyu-Hwan
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.74-79
    • /
    • 2001
  • Alumina composite reinforced by chopped alumina fiber was fabricated by filter-pressing the fiber slurry followed by the infiltration of alumina slurry. The chopped fiber was coated with nickel by electroless plating method. The green samples were densified by hot-pressing. Microstructures were studied by SEM and the mechanical properties such as bending strength and fracture toughness were measured. The resulting mechanical properties were analyzed in relation with processing parameters such as preform density and resulting microstructures. The load-displacement curve of the specimen with Ni interlayer but without Ni inclusion showed brittle fracture mode due to the direct contact between matrix and fiber. The load-displacement curve of the specimen with Ni interlayer and Ni inclusion in the matrix which is introduced by high applied pressure during specimen preparation showed non-brittle fracture mode due to the fiber pull-out and dutile phases in the matrix.

  • PDF

Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (II) -Comparison of properties between domestic and French-made products- (압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (II) -수명향상을 위한 국산과 외산소재의 물성과 파괴특성비교-)

  • Suh, Chang-Min;Suh, Min-Soo;Oh, Sang-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.40-46
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditions ($570^{\circ}C$) to analyze the cause and prevent the roll shell steel's brittle fracture and its damage.

Fracture Analysis of Porous Titanium for Dental Implant Fabricated by Space Holder Process (Space holder 공정으로 제조된 치과 임플란트용 타이타늄 다공체의 파손 분석)

  • Lee, Seung-Mi;Jang, Jin-Man;Lee, Won-Sik;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze fracture behavior and failure mechanism of porous titanium for dental implant fabricated by space holder process. Method: Three porous titanium specimens with a specific volume fraction of open pore were test by 3 point bending and compression stress condition, respectively. Fracture appearance was observed by scanning electron microscope and discussed in relation with oxygen content. Results: For compression-tested specimens, two specimen showed brittle failure, while the other one showed normal failure after deformation. High oxygen content was detected in the brittle-fractured specimen. Several micro-cracks initiated at the struts propagated down to the bottom of the specimen resulting in normal failure. Conclusion: Oxygen contamination during the fabrication process can leads brittle premature failure, and hence quality problem of the porous titanium for dental implant.

Local brittle zone of offshore structural steel welds (해양구조용 강재의 국부취화영역에 관한 연구)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

Natural Element Analysis on Micro-cracking Behavior of Brittle Solids (취성 재료의 마이크로 크랙킹 거동에 관한 자연요소해석)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.724-730
    • /
    • 2006
  • Fracture behavior of brittle solids is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The meso-analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to tensile macrostress. The method is also applied to the analysis of the propagation of a macrocrack accompanied by the coalescence with microcracks formed near the macrocrack-tip.

Temperature effects on brittle fracture in cracked asphalt concretes

  • Ayatollahi, Majid-Reza;Pirmohammad, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • Cracking at low temperatures is one of the frequently observed modes of failure in asphalt concretes. In this investigation, fracture tests were performed on cracked asphalt concrete subjected to pure mode I and pure mode II loading at different subzero temperatures. An improved semi-circular bend (SCB) specimen containing a vertical crack was used to conduct the experiments. The SCB specimens produced from the gyratory compacted cylindrical samples were compressively loaded, and critical stress intensity factors, $K_{If}$ and $K_{IIf}$, were then calculated using peak loads obtained from the tests. The experimental results showed that with decreasing the temperature, mode I and mode II critical stress intensity factors increased first but below a certain temperature they both decreased. It was also found that at a fixed temperature, the mode II fracture resistance of the asphalt concrete was higher than its mode I fracture resistance.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.