• 제목/요약/키워드: Bridge rectifier

검색결과 292건 처리시간 0.022초

6배압 정류기를 이용한 고전압 전원장치에 관한 연구 (A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier)

  • 안태영;길용만
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.

단일 전력단 고주파 공진 DC-DC 컨버터의 특성평가에 관한 연구 (A Study on Characteristic Estimation of Single-Stage High Frequency Resonant DC-DC)

  • 원재선;박재욱;남승식;심광렬;이봉섭;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.318-320
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the Proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Asymmetrical Pulse-Width-Modulated Full-Bridge Secondary Dual Resonance DC-DC Converter

  • Chen, Zhangyong;Zhou, Qun;Xu, Jianping;Zhou, Xiang
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1224-1232
    • /
    • 2014
  • A full-bridge secondary dual-resonant DC-DC converter using the asymmetrical pulse-width modulated (APWM) strategy is proposed in this paper. The proposed converter achieves zero-voltage switching for the power switches and zero-current switching for the rectifier diodes in the whole load range without the help of any auxiliary circuit. Given the use of the APWM strategy, a circulating current that exists in a traditional phase-shift full-bridge converter is eliminated. The voltage stress of secondary rectifier diodes in the proposed converter is also clamped to the output voltage. Thus, the existing voltage oscillation of diodes in traditional PSFB converters is eliminated. This paper presents the circuit configuration of the proposed converter and analyzes its operating principle. Experimental results of a 1 kW 385 V/48 V prototype are presented to verify the analysis results of the proposed converter.

Transformerless Cascaded AC-DC-AC Converter for Multiphase Propulsion Drive Application

  • Tao, Xing-Hua;Xu, Lie;Song, Yi-Chao;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.354-359
    • /
    • 2012
  • A transformerless converter suitable for multiphase drive application is presented in this paper. The topology employs a cascaded H-bridge rectifier as the interface between the grid and multi inverters which drive the multiphase motor. Compared with the conventional structure, the new topology eliminates the input transformer and also has the advantages such as four quadrant operation, simple configuration, low cost, high efficiency, and so on. The control strategies for the grid-side cascade H-bridge rectifier and the motor-side inverter are studied accordingly. Based on the multi-rotational reference frame, modular control scheme is developed to regulate the multiphase drive system. Simulation results show the proper operation of the proposed topology and the corresponding control strategy.

High Power Factor Three Phase Rectifier for High Power Density AC/DC Conversion Applications

  • Cho, J.G.;Jeong, C.Y.;Baek, J.W.;Song, D.I.;Yoo, D.W.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.648-653
    • /
    • 1998
  • The conventional three-phase rectifier with bulky LC output filter has been widely used in the industry because of its distinctive advantages over the active power factor correction rectifier such as simple circuit, high reliability, and low cost. Over than 0.9 power factor can be achieved, which is acceptable in most of industry applications. This rectifier, however, is not easy to use for high power density applications since the LC filter is bulky and heavy. To solve this problem, a new simple rectifier is presented in this paper. By eliminating the bulky LC filter from the conventional diode rectifier without losing most of the advantages of the conventional rectifier, very high power density power conversion with high power factor can be achieved. Operation principle and design considerations are illustrated and verified by Pspice simulation and experimental results from a prototype of 3.3 kW rectifier followed by 100KHz zero voltage switching full bridge PWM converter

  • PDF

Analysis and Implementation of a Half Bridge Class-DE Rectifier for Front-End ZVS Push-Pull Resonant Converters

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.626-635
    • /
    • 2013
  • An analysis of the junction capacitance in resonant rectifiers which has a significant impact on the operating point of resonance circuits is studied in this paper, where the junction capacitance of the rectifier diode is to decrease the resonant current and output voltage in the circuit when compared with that in an ideal rectifier diode. This can be represented by a simplified series resonant equivalent circuit and a voltage transfer function versus the normalized operating frequency at varied values of the resonant capacitor. A low voltage to high voltage push-pull DC/DC resonant converter was used as a design example. The design procedure is based on the principle of the half bridge class-DE resonant rectifier, which ensures more accurate results. The proposed scheme provides a more systematic and feasible solution than the conventional resonant push-pull DC/DC converter analysis methodology. To increase circuit efficiency, the main switches and the rectifier diodes can be operated under the zero-voltage and zero-current switching conditions, respectively. In order to achieve this objective, the parameters of the DC/DC converter need to be designed properly. The details of the analysis and design of this DC/DC converter's components are described. A prototype was constructed with a 62-88 kHz variable switching frequency, a 12 $V_{DC}$ input voltage, a 380 $V_{DC}$ output voltage, and a rated output power of 150 W. The validity of this approach was confirmed by simulation and experimental results.

Determination Method for Topology Configuration of Hybrid Cascaded H-Bridge Rectifiers

  • Zhuang, Yuan;Wang, Cong;Wang, Chang;Cheng, Hong;Gong, Yingcai;Wang, Hao
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1763-1772
    • /
    • 2016
  • To reduce system complexity and implementation costs, fully-controlled H-bridge (FHB) modules and diode H-bridge PFC (DHB) modules are cascaded to form a hybrid cascaded H-bridge rectifier (HCHR). In this paper, the advantages of such a HCHR over other cascaded rectifiers are analyzed depending on the numbers of FHB modules and DHB modules. Therefore, to assign proper numbers to these two kinds of modules for the HCHR, a configuration determination method is investigated under balanced and imbalanced loads. Three principles are also presented to guide the configuration determination for the HCHR. In addition, the constraints for selecting the step-up ratio and filter inductance are derived based on a phasor diagram analysis. The proposed configuration determination method is validated by simulations under three different conditions in the PSIM environment. Finally, experiments are carried out on a scaled-down prototype where the configuration can be easily adjusted. The feasibility of the proposed theory is then verified by experimental results.

선박 평형수 처리용 Phase Shift Full Bridge Converter 출력 제어 알고리즘 (An Output Control Algorithm for Phase Shift Full Bridge Converter for Ballast Water Treatment)

  • 이상리;김학원;조관열;정호철;김종혁;박귀철
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.530-539
    • /
    • 2013
  • In large vessels, proper water level must be maintained with a balance for right and left equilibrium by absorbing or draining sea water in ballast water tank. However, this ship's ballast-water can be drained marine organisms to local sea area by world trade and this can be a source of ecological disturb. In order to solve these problems, marine organisms must be removed in accordance with the international covenant for the emission of microorganisms. By this reason, the seawater electrolysis rectifier of low-voltage high-current rectifiers with excellent ability for microbial treatment is required. In this paper, PSFB converter will be discussed for the seawater electrolysis rectifier. Furthermore, a new output control method with the power limit operation under the limited maximum voltage condition is proposed for this rectifier. The simulation for the proposed current control method for PSFB Converter is shown using MATLAB/SIMULINK. Finally the usefulness of the proposed control method is presented by the experimental results.

Boost-Half Bridge Single Power Stage PWM DC- DC Converters for PEM-Fuel Cell Stacks

  • Kwon, Soon-Kurl;Sayed, Khairy F.A.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.239-247
    • /
    • 2008
  • This paper presents the design of 1 kW prototype high frequency link boost half bridge inverter-fed DC-DC power converters with bridge voltage-doublers suitable for small scale PEM fuel cell systems and associated control schemes. The operation principle of this converter is described using fuel cell modeling and some operating waveforms. The switching mode equivalent circuits are based on simulation results and a detailed circuit operation analysis at soft-switching conditions.

Semi-Bridge PWM 컨버터를 이용한 단상 입력 역률개선 (Power Factor Correction of Single Phase using Semi-Bridge PWM Converter)

  • 이태원;김재문;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1999년도 학술대회논문집-국제 전기방전 및 플라즈마 심포지엄 Proceedings of 1999 KIIEE Annual Conference-International Symposium of Electrical Discharge and Plasma
    • /
    • pp.157-161
    • /
    • 1999
  • This paper presents a Single-phase Semi-Bridge PWM Converter, which features Continuos Conduction Mode and Phase-adjusted Unipolar PWM Method. The reduced conduction losses are achieved by the employment of a single converter, instead of the typical configuration composed of a front end rectifier followed by a boost converter. Theoretical principle of operation, a design example and Simulation results of a 3kW Semi-Bridge PWM converter with 220 Vrms input voltage and 400 Vdc output voltage are presented.

  • PDF