• Title/Summary/Keyword: Bridge design guideline

Search Result 53, Processing Time 0.022 seconds

A Study on the Sensitivity of Influencing Parameters on Axial Force in CWR on a Viaduct (교량상 장대레일의 축력 영향인자의 민감도 분석에 관한 연구)

  • Chun, Hee-Kwang;Choi, Jin-Yu;Choi, Il-Yun;Yang, Shin-Chu;Jeong, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1043-1049
    • /
    • 2008
  • Trouble by excessive axial stress in CWR layed on a bridge is frequently happen, and this problem is induced from lack of considering on the track/structure interface on preliminary design stage. In this study, the sensitivity evaluation for the major influencing parameters, that is, expansion length of span, stiffness of super structure, arrangement of bearing, and strength of sub-structure, to the axial force in CWR on a bridge is conducted. From the sensitivity study, the guideline to reduce axial force efficiently in CWR for bridge engineer was suggested. The suggested guideline may not applicable for every case, but it is helpful for preliminary design of bridge.

  • PDF

Vibration Measurements of the Foot-Bridges Using Mobile-Phone (휴대용 계측기를 이용한 보도교 진동계측분석)

  • Do, Ki-Young;Yoon, Sung-Won;Kim, Do-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2014
  • The design of foot-bridge is often influenced by natural frequency. Consequently, vibration frequency becomes important. The empirical expressions used to quantify this parameter at the design phase have not been developed enough to give guideline to Korean foot-bridge. This paper is concerned with the vertical natural frequency of steel foot-bridges. It describes the vibration measurement methods employed for testing structures and presents reliable methods of assessing natural frequency from jumping vibration tests. Data from measurements on 16 structures in Seoul are given. Regression formulas of natural frequency for steel-framed foot-bridges are suggested. Finally, obtained formula are compared with empirical expressions of Seoul City's guideline.

Effects of Cable Rupture on Dynamic Responses of a Concrete Cable-stayed Bridge (케이블 파단이 콘크리트사장교 동적거동에 미치는 영향)

  • Kim, Yu Hee;Go, Hyeong Gyu;Kim, Jae Cheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.84-91
    • /
    • 2012
  • This paper aims to investigate the effects of cable rupture on the dynamic responses of concrete cable-stayed bridges in comparison with those of steel composite ones. It examines an adequate analysis method for simulating cable rupture using a time history function and evaluates the design guidelines for dynamic amplification factor (DAF). The computed DAFs from a concrete cable-stayed bridge are compared with those from a steel composite one based on the design guideline. As a conclusion, the current design guidelines for DAF may be reliable in overall but show some unstable cases despite satisfying the design guidelines, especially for concrete cable-stayed bridges.

Analytical Method to Determine the Dynamic Amplification Factor due to Hanger Cable Rupture of Suspension Bridges (현수교 행어 케이블 파단에 의한 동적확대계수의 해석적 결정법)

  • Na, Hyun Ho;Kim, Yuhee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.301-308
    • /
    • 2014
  • A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.

A Guideline for Development of Track-Bridge Structural System with Sliding Layer to Reduce the Track-Bridge Interaction (궤도-교량 상호작용 저감을 위한 슬라이드 층이 고려된 궤도-교량 구조시스템의 개발 방향)

  • Yun, Kyung-Min;Choi, Shin-Hyung;Song, Dae-Seok;Lee, Kyung-Chan;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1469-1476
    • /
    • 2015
  • The bridges take a significant part of entire route in Korea railway, because 70% of Korean territory is covered with mountains. For this reason, span enlargement of railway bridges is more advantageous to increase economic efficiency on the bridge design. However there are many limitations such as additional axial force of the rail, excessive displacement due to track-bridge interaction. In this study, track-bridge interaction analysis was conducted considering the sliding layer which was installed between the track and girder. From the numerical analysis results, the behavior of track-bridge interaction was investigated according to the installation method of sliding layer. Finally, a guideline for development of track-bridge structure system to reduce the track-bridge interaction was proposed.

Guideline for Bridge Design Wind Speed in Coastal Region (해안지역 교량 설계풍속 산정 가이드라인)

  • Lee, Sungsu;Kim, Junyeong;Kim, Young-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • Estimation of wind load on bridges is one of the most important aspects in designing bridges in coastal region. Various design codes and researches have suggested the procedure to estimate design wind speed; however, they do not match one another due to many reasons such as incomplete data set, ignorance of wind environment and so on. For this reason, the necessity of guideline for estimation procedure of basic wind speed which reflect the roughness of surface and the topographical effect have been increasing. In this study, we have analysed limitations of the basic wind speed of nationwide suggested by Korea Building code(AIK, 2009) and Highway bridge design code(MOLTMA, 2010). In additional, we set forth guidelines considering the roughness of land surface and the topographical effect. Using the procedure, the basic wind speed were estimated for 15 coastal regions in Korea and compared with those listed in the existing codes.

Problem and Improvement in Design of Drainage Pipe for Bridges (교량용 배수관경 국내기준의 문제점 및 개선안)

  • Hong, Kee-Jeung;Oh, Chang-Kook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • Recently, the cause of flood damage has been the local torrential rainfalls rather than a total amount of yearly rainfalls. The domestic design code of drainage pump is being improved by considering the effect of local torrential rainfalls, while there is no consideration on the local torrential rainfalls in the domestic design code of bridge-deck drainage. Compared with the code of Federal Highway Administration in USA, no rational bases are specified in the domestic design code of bridge-deck drainage. This paper proposes the reasonable design guideline for bridge-deck drainage considering the effect of local torrential rainfalls.

Deflection Limit based on Vibration Serviceability of Railway Bridges Considering the Correlation between Train Speed and Vertical Acceleration on Coach (열차의 주행속도와 차체연직가속도의 상관관계를 고려한 철도교량의 진동사용성 처짐 한계)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.545-554
    • /
    • 2011
  • In order to get dynamic serviceability of a train travelling on a railway bridge, comfort limits with the deflection of bridge and vertical acceleration on car body are proposed in Eurocode, Shinkansen design criteria, The design guideline of the Honam High-speed railway. The design guideline of the Honam High-speed railway has quoted Eurocode. Therefore it is expected that supplementation of comfort limit of railway bridge according to expansion of span length and the improvement traveling speed of trains in the future would relatively fall behind developed countries in railway. Therefore, in order to secure technological competitiveness in world market, the study was conducted to propose the deflection limit based on vibration serviceability of railway bridges that can consider bridge-train interaction and travelling speed increase. The parameter study and bridge-train dynamic interaction analysis was conducted to figure out the correlation of vertical acceleration on car body and bridge displacement according to the increase in travelling speed. Also, the trend of increasing vertical acceleration on car body according to the increase in travelling speed was confirmed, and the amplification coefficient of vertical acceleration on car body was suggested. And the deflection form and vibration of the bridge were assumed to be in harmonic motion, and transfer function and the amplification coefficient were used to develop the dynamic serviceability deflection limit of the high-speed railway bridge as a formula.

Development of Bridge Design Guidelines in Kangwondo Mountain Area (강원도 산간계곡형 교량 설계 지침 개발)

  • Kim, Tae Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2008
  • The purpose of this study is development of bridge design guidelines in Kangwondo mountain area. Much damages heve been wrought by Typhoon Rusa(2002), Maemi(2003), Ewinniar(2006) and severe rain storm in July 2006 in Kangwondo mountain area. The partial cause of these much damages are not consider the regional and geomorphologic condition of river in Kangwondo mountain area. Most of the bridge damages were caused by severe wash out the foundation of pier and abutment. As other reasons, dead trees, branches of the trees and floating materials were catched by pier and deck which make difficult or cut off the flow. Design guidelines are presented by analysis the types and reasons of damages of the disaster.

A Study on the Behavior of Cross Beams in Two-I girder steel bridges (2개의 거더가 적용된 강플레이트 거더교의 가로보 거동에 관한 연구)

  • Kyung, Kab Soo;Kwon, Soon Chole;Park, Kyung Jin;Jeon, Jun Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.523-532
    • /
    • 2006
  • It is thought that the suggestion of efficient and rational design guideline based on the behavior evaluation of bridge structure system the included cross beam is necessary for the construction efficiency of two-I girder steel bridges. Therefore, in this study, the effects of influence parameters are investigated by the behavior analyses of the bridges, in which the influence parameters are location, spacing and rigidity of the cross beam. For this study, the existed two-I girder steel bridges firstly were selected with the model of case study and the FE analyses for some case models were performed to estimate the action of the cross beam in the bridge. From the analyses, it was estimated that if it consider local stress and load distribution of a floor system, shell and solid elements are compatible to modeling of the cross beams. Also, the efficient design guideline for the cross beam of two-I girder steel bridge was suggested from parameter studies used location, spacing and rigidity of the cross beam.