• Title/Summary/Keyword: Bridge Scour

Search Result 125, Processing Time 0.025 seconds

Field Evaluation of Scour Countermeasure Using Geobag (지오백 세굴보호공법의 현장 적용성 평가)

  • Park, Jae-Hyun;Kwak, Ki-Seok;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1251-1258
    • /
    • 2006
  • Field evaluation of new scour countermeasure using geobag and aggregate is performed to prepare for the basis of design and construction standard in Korea. Polyester non-woven geotextile is determined as a geobag material and tire cord is used to sew up the geobag which contain aggregate. Hwasang-gyo(bridge) is selected as a pilot test site through office review and field investigation. According to the design flood of Hwasang-gyo(bridge), the size and volume of geobag are calculated and construction area and required number of geobags are computed by considering the specification of the pier and foundation of the bridge. After construction, scour depth around geobag construction area is measured and the stability of geobag is ascertained by using pole and digital camera.

  • PDF

EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF RIVERBED MATERIALS USING AN ULTRASONIC SENSOR

  • Yeo, Woon-Kwang;Jang, Bok-Jin;Lee, Jong-Kook;Kim, Young-Bin
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • The scouring process is complex and subject to many factors. Recently, experiments for real-time bridge scour monitoring have been active as means for a more reliable scour prediction. Riverbed materials are an important factor in bridge scouring; therefore, an accurate estimation of riverbed material is critical in predicting a scour. As a part of this approach, an ultrasonic sensor, which can not only detect river bottom during floods but can also be installed lose to the underwater structures, was developed. This sensor is able to map the river bottom using an ultrasonic waves with the characteristics of the returning wave, reflected from an object or bottom ground. The reflected wave is unique according to the situations, or materials below. Therefore, it would be possible to identify the consisting materials of a riverbed if we could reveal each characteristic in the received signals. In this study, a preliminary experiment was performed in the laboratory to identify and classify received signals, which is unique to each material. The analysis of this experiment gives the graph, which makes it possible to identify materials of the river bottom through the ultrasonic signals. The proposed graph was verified through a comparison with the actual field data measured in river.

  • PDF

Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique (기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측)

  • Choi, Sung-Uk;Choi, Seongwook;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1275-1284
    • /
    • 2021
  • This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.

A Study on Improved Inspection Method of the Foundation Scouring and Establishment of 3D Underwater Surface Map (개선된 교량 기초세굴 점검방법 및 3D 하상지도 구축 연구)

  • Choi, Hyun-Chul;Ko, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.161-170
    • /
    • 2022
  • The maintenance of bridges installed in rivers is carried out through facility safety inspection and repair & reinforcement procedures according to the results. Many studies have been so far conducted on the safety check of the bridge upperstructure because of the ease of access. However as it is impossible to directly investigate whether the pier foundation installed in the river has been scoured. Management of underwater foundations has remained based on theory. In this study, the scour of the bridge foundation installed in such a river was realized in 3D form by using an echo sounder and VRS. This made it possible to predict the scour pattern through comparison and analysis with the ground height of the riverbed at the time of the bridge installation. Based on these results, if the pier foundation is used as an initial data to determine whether or not local scour is present and to predict long-term scouring, bridge collapse due to foundation scour can be prevented.

Experimental Study for Protection of Local Scouring around Bridge Pier in a Curved Channel (만곡부에 위치한 교각주위의 국부세굴 보호공에 관한 실험적 연구)

  • Choe, In-Ho;Park, Yeong-Jin;Song, Jae-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 1998
  • Laboratory flume experiments to investigate the characteristics of the flows and local scour around circular bridge pier in a curved channel are performed. In this study, the effect of a circular collar device for controlling the depth of scour is examined. The scour depth with a collar is about 40% of the scour depth without collar in the straight course of the flume while it is about 44% of the scour depth without collar at the location of 150' in the curved channel. As the results of experiments using the collar of which diameter is twice of pier, the reduction of scour depth is the most effective in a straight channel when the location of collar is 0.2h( h:depth) below the channel bottom. And, the reduction of scour depth is the most effective in a curved channel when the location of collar is 0.1h below the channel bottom.

  • PDF

Pier Scour Prediction in Pressure Flow

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kim, Jong-Sup
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.23-37
    • /
    • 1995
  • In this experimental paper, the maximum scour depth at pier was student. The model of the pier of San Gye bridge in the Bocheong stream was set for the experimental studies. Several model verification processes were conducted through the roughness comparisons between model and prototype, pursuing scour depth variations with time depending upon channel bed variation, the comparison of the ratios between falling velocities and shear velocities in the model and prototype, and the comparison of pier scour depths between experimental data and field measuring data. The experiments were conducted in the free flow conditions and pressure flow conditions. The maximum scour depth at piers in the pressure flow conditions is almost twice as much as compared to the free flow conditions. Also, the maximum scour depth variations are indicated in the figures based on the Froude numbers, opening ratios, water depths and approaching angles in the free surface flow conditions.

  • PDF

Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks (인공신경망모형과 군집분석을 이용한 교각 세굴심 예측)

  • Lee, Chang-Hwan;Ahn, Jae-Hyun;Lee, Joo Heon;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.111-120
    • /
    • 2009
  • A local scour around a bridge pier is known as one of important factors of bridge collapse. Two approaches are usually used in estimating a scour depth in practice. One is to use empirical formulas, and the other is to use computational methods. But the use of empirical formulas is limited to predict a scour depth under similar conditions to which the formulas were derived. Computational methods are currently too expensive to be applied to practical engineering problems. This study presented the application of artificial neural networks (ANN) to the prediction of a scour depth around a bridge pier at an equilibrium state. This study also investigated various ANN algorithms for estimating a scour depth, such as Backpropagation Network, Radial Basis Function Network, and Generalized Regression Network. Preliminary study showed that ANN models resulted in very wide range of errors in predicting a scour depth. To solve this problem this study incorporated cluster analysis into ANN. The incorporation of cluster analysis provided better estimations of scour depth up to 42% compared with other approaches.

교각주변의 정적세굴에 관한 연구

  • Kim, Hui-Jong;Sin, Dong-Su;Lee, Seung-U
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.87-87
    • /
    • 1987
  • Bridge piers are sometimes damaged by local scour. Although the problem of local scour around pier has been studied extensively, it has been difficult to estimate local scour deth quantitatively. This study is concerned with local scour around semicylindrical piers arranged in various types under the condition of clear water scour. Through dimensional analysis, it was found that scour depths were relative to Re, Fr, and Ns. In the case of semicylindrical piers, the variation of dimensionless scour depth with dimensionless time (effect of Ns, pier diameter and length, incidence angle) and the variation of scour depth with vortex intensity and resistance are investigated experimentally to obtain a formula. And forula for estimating the maximum depth of scour is obtained.

  • PDF

A study on the clear water xcour around piers (교각주변의 정적세굴에 관한 연구)

  • Kim, Hui-Jong;Sin, Dong-Su;Lee, Seung-U
    • Water for future
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 1987
  • Bridge piers are sometimes damaged by local scour. Although the problem of local scour around pier has been studied extensively, it has been difficult to estimate local scour depth quantitatively. This study is concerned with local scour around semicylindrical piers arranged in various types under the condition of clear water scour. Through dimensional analysis, it was found that scour depths were relative to Re, Fr, and Ns. In the case of semicylindrical piers, the variation of dimensionless scour depth with dimensionless time (effect of Ns, pier diameter and length, incidence angle) and the variation of scour depth with vortex intensity and resistance are investigated experimentally to obtain a formula. And formula for estimating the maximum depth of scour is obtained.

  • PDF

Estimation of Local Scour at Piers Using Artificial Neural Network (인공신경망을 이용한 피어의 국부세굴 평가)

  • Park, Hyun-Il;Shin, Jong-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.17-24
    • /
    • 2008
  • It is known that scour at bridge piers is one of the leading causes of bridge failure. However, the mechanism of flow around a pier structure is so complicated that it is difficult to establish a general empirical model to provide accurate estimation for scour. Especially, each of the proposed empirical formula yields good results for a particular data set but can't show reliable predictability for various scouring data set. In this study, an alternative approach, that is, artificial neural networks (ANN), is proposed to estimate the local scour depth with numerous field data base. The local scour depth was modeled as a function of seven variables; pier shape, pier width, pier length, skew angle, stream velocity, water depth, $D_{50}$. 426 field data were used for the training and testing of ANN model. The predicted results showed that the neural network could provide a better alternative to the empirical equations.