• Title/Summary/Keyword: Bridge Deck Plate

Search Result 114, Processing Time 0.022 seconds

Structural Behavior of Composite Liminate Bridge Deck Considering a Girder Stiffness (Girder의 강성을 고려한 복합 재료 교량 상판의 구조 거동)

  • Park, Je-Sun;Lee, Jung-Ho;Won, Chi-Moon;Shim, Do-Sik
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.107-115
    • /
    • 1998
  • Many of the bridge and building floor systems, including the girders and cross-beams, also behave a similar special orthotropic plates. Such plates are subject to the concentrate masses in the form of traffic loads, or the test equipments such as the accelerator in addition to their own masses. Analysis of such problems is usually very difficult. Most of the bridge slabs on girders have large aspect ratios. Finite difference method is used for this purpose, in this paper. The result is compared with that of the beam theory.

  • PDF

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

CFD based simulations of flutter characteristics of ideal thin plates with and without central slot

  • Zhu, Zhi-Wen;Chen, Zheng-Qing;Gu, Ming
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-19
    • /
    • 2009
  • In this paper, the airflow around an ideal thin plate (hereafter referred to as ITP) with various ratios of central slot is simulated by using the finite-difference-method (FDM)-based Arbitrary-Lagrangian-Eulerian descriptions for the rigid oscillating body. The numerical procedure employs the second-order projection scheme to decouple the governing equations, and the multigrid algorithm with three levels to improve the computational efficiency in evaluating of the pressure equation. The present CFD method is validated through comparing the computed flutter derivatives of the ITP without slot to Theodorsen analytical solutions. Then, the unsteady aerodynamics of the ITP with and without central slot is investigated. It is found that even a smaller ratio of central slot of the ITP has notable effects on pressure distributions of the downstream section, and the pressure distributions on the downstream section will further be significantly affected by the slot ratio and the reduced wind speeds. Continuous increase of $A_2^*$ with the increase of central slot may be the key feature of the slotted ITP. Finally, flutter analyses based on the flutter derivatives of the slotted ITP are performed, and moreover, flutter instabilities of a scaled sectional model of a twin-deck bridge with various ratios of deck slot are investigated. The results confirm that the central slot is effective to improve bridge flutter stabilities, and that the flutter critical wind speeds increase with the increase of slot ratio.

A Study on the Heat Source Equation for the Thermal Effect Analysis of Guss Asphalt Pavement (구스 아스팔트의 열 영향 해석을 위한 열원방정식에 관한 연구)

  • Park, Hyun-Woong;Lee, Wan-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.96-102
    • /
    • 2019
  • The study of thermal effect on the structure is carried out in the case of Guss asphalt which is paved at the temperature of $240^{\circ}C$ or higher in the bridge pavement of the steel deck bridges. However, studies on the heat source data applicable to numerical analysis are insufficient, the temperature load is used as a joint load. In this study, the heat source equations that can be directly loaded on the plate elements, although limited, are presented using the measured temperature data in the Guss asphalt pavement and its validity is confirmed by a brief numerical analysis.

Minimum Thickness of the Plate Member for UHPC Deck (초고성능콘크리트 바닥판 판부재의 최소두께)

  • Hwang, Hoon-Hee;Yoo, Dong-Min;Park, Sung-Yong;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.123-124
    • /
    • 2009
  • This research is a part of the comprehensive research project to develop the optimized UHPC precast deck system applying to durable and cost-effective hybrid cable stayed bridge. Longitudinally prestressed ribbed section is proposed to make the best use of a advantage of the ultra high performance concrete and the design concept is presented to decide the sectional property.

  • PDF

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Numerical study of steel box girder bridge diaphragms

  • Maleki, Shervin;Mohammadinia, Pantea;Dolati, Abouzar
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.681-699
    • /
    • 2016
  • Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have been considered. Affected areas of the diaphragm are distinguished.

Estimation of Dynamic Displacements from Strain Signal using Mode Shapesof Simply Supported Beam (단순보 모드형상을 이용하여 변형률 신호에서 동적변위 응답 추정)

  • Shin, Soo-Bong;Lee, Seon-Ung;Han, Ah-Reum-Sam;Kim, Hyun-Su;Kim, Hee-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.326-331
    • /
    • 2009
  • An algorithm is proposed for computing dynamic displacements of a bridge using FBG sensors. An existing algorithm for estimating dynamic displacements of a simply supported beam through mode superposition is extended and applied to various types of bridges with bending and torsional modes. The proposed algorithm is examined through field tests on a suspension span steel deck plate box girder bridge. Guidelines are provided for determining the number of modes and the number of strain gages to be used.

  • PDF

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

An experimental construction of railway steel plate girder strengthen adding ballast system by transport equipment (선로 이송 가설공법을 적용한 철도판형교 유도상화)

  • Min, Ji-Hong;Seo, Jong-Won;Jang, Hyeong-Sik;Park, Joon-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.707-716
    • /
    • 2011
  • It has been applied using cranes or insertion methods to install heavy structures to strengthen existing railway bridges. These methods are uneconomical because of two reasons. The first one is it is required to construct approach roads for heavy equipment and/or working yard. The second one is the electric lines shall be cutoff during construction. Both require additional construction cost and duration. In this study, new transport equipment was developed which can be applied to heavy structures up to 100 ton. Using this method, the heavy structure can be loaded into the new transport equipment at working yard and transported to the working site. This method can be applied, but not limited to railway bridge or roadbed rehabilitation. It was found that the precious construction can be achieved to install heavy structure using this method. The experimental construction to make non-ballast girder bridge composite with new pc deck slab using this method was carried out for Jewon bridge. The example bridge is in extreme condition because it locates above national road #38 within extreme transition curve and has 10 ‰ slope and skew. The experimental construction results were satisfactory both for safety and construction precision.

  • PDF