• Title/Summary/Keyword: Bridge Aging

Search Result 96, Processing Time 0.021 seconds

Chronic Subdural Hematoma in the Aged, Trauma or Degeneration?

  • Lee, Kyeong-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Chronic subdural hematomas (CSHs) are generally regarded to be a traumatic lesion. It was regarded as a stroke in 17th century, an inflammatory disease in 19th century. From 20th century, it became a traumatic lesion. CSH frequently occur after a trauma, however, it cannot occur when there is no enough subdural space even after a severe head injury. CSH may occur without trauma, when there is sufficient subdural space. The author tried to investigate trends in the causation of CSH. By a review of literature, the author suggested a different view on the causation of CSH. CSH usually originated from either a subdural hygroma or an acute subdural hematoma. Development of CSH starts from the separation of the dural border cell (DBC) layer, which induces proliferation of DBCs with production of neomembrane. Capillaries will follow along the neomembrane. Hemorrhage would occur into the subdural fluid either by tearing of bridge veins or repeated microhemorrhage from the neomembrane. That is the mechanism of hematoma enlargement. Trauma or bleeding tendency may precipitate development of CSH, however, it cannot lead CSH, if there is no sufficient subdural space. The key determinant for development of CSH is a sufficient subdural space, in other words, brain atrophy. The most common and universal cause of brain atrophy is the aging. Modifying Virchow's description, CSH is sometimes traumatic, but most often caused by degeneration of the brain. Now, it is reasonable that degeneration of brain might play pivotal role in development of CSH in the aged persons.

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Nonlinear Analysis of Segmentally Erected Prestressed Concrete Cable-Stayed Bridges (시공단계를 고려한 프리스트레스트 콘크리트 사장교의 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • An analysis method for the time-dependent nonlinear analysis of segmentally erected planar prestressed concrete cable-stayed bridges was described. To account for the time-dependent effects, load history, creep, shrinkage. aging of concrete and relaxation of prestress were considered. Changes in boundary conditions and loads, installing and removing frame elements, stressing, restressing and removing cables and prestressing tendons were incorporated for modeling segmental erection operations. One typical example on segmentally erected prestressed concrete cable-stayed bridge was presented to illustrate the analysis method. Results of this example show that it is important to follow the development of stresses and deformations at all stages of construction to predict the true response of the bridge through its various load history.

  • PDF

Optimal SOC Reference Based Active Cell Balancing on a Common Energy Bus of Battery

  • Bae, SunHo;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • This paper presents a study on the state-of-charge (SOC) reference based active cell balancing in real-time. The optimal references of SOC are determined by using the proposed active cell balancing system with the bidirectional DC/DC converters via the dual active bridge (DAB) type. Then, the energies between cells can be balanced by the power flow control of DAB based bidirectional DC/DC converters. That is, it provides the effective management of battery by transferring energy from the strong cell to the weak one until the cell voltages are equalized to the same level and therefore improving the additional charging capacity of battery. In particular, the cell aging of battery and power loss caused from energy transfer are considered. The performances of proposed active cell balancing system are evaluated by an electromagnetic transient program (EMTP) simulation. Then, the experimental prototype is implemented in hardware to verify the usefulness of proposed system.

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Development of maintenance cost estimation method considering bridge performance changes (교량 성능변화를 고려한 유지관리비용 추계분석 방법 개발)

  • Sun, Jong-Wan;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.717-724
    • /
    • 2018
  • To prepare for the explosive increase in maintenance costs of bridges according to the aging of infrastructure, future maintenance costs of bridges should be predicted. For this purpose, the management status of bridges was investigated and modeled as the upper limit of the performance level and the target management level according to the life cycle. This paper proposes methodologies and procedures for estimating the bridge maintenance costs using two models and existing cost and performance prediction models that consist of unit repair cost model according to the safety score, performance degradation model of bridges, unit reconstruction cost, and average reconstruction time. To verify the applicability, future maintenance costs can be forecasted for specific management agency considering the number of bridges, degree of aging, and current management status. As a result, it is possible to obtain the maintenance cost and safety level of an individual bridge level for each year. In addition, by summing them up to the agency level, the average safety score, ratio of the safety level, inspection costs, repair costs, and reconstruction costs can be obtained. In a further study, the changes in maintenance costs can be analyzed according to the changes in the target management levels using the developed method. The optimal management level can be suggested by reviewing the results.

Examination of Correlation between the Condition Evaluation Results of Superstructure and the Safety and Load-carrying Capacity of Bridges (노후 교량 유지관리를 위한 상부구조물의 상태평가 결과와 교량의 안전성 및 내하력과의 상관관계 분석)

  • Park, Ju-Hyun;An, Hyojoon;Han, Manseok;Min, Jiyoung;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.64-71
    • /
    • 2020
  • In recent years, many infrastructure have been rapidly aging around the world, which grows interest in the maintenance of the infrastructure. Among the social infrastructure, bridge is a very important structure to transport lots of human and various products. The performance evaluation of bridge can be divided into the condition evaluation and safety evaluation, proposed by Korea Infrastructure Safety and Technology Corporation. However, there are no separate criteria for the performance evaluation of three-class bridges. In general, the performance of bridge is dominated by the results of the condition evaluation, which is lower than that of the safety evaluation. Therefore, this study assessed the correlation between the condition evaluation of superstructure and bridge and also between the condition evaluation and the safety and load-carrying capacity of bridge. The results of the study would provide a basic data for the more quantitative and higher relevant performance evaluation of the existing bridges, particularly for three-class bridges.

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

LoRa LPWAN-based Wireless Measurement Sensor Installation and Maintenance Plan (LoRa LPWAN 기반의 무선 계측센서 설치 및 유지관리 방안)

  • Kim, Jong-Hoon;Park, Won-Joo;Park Sang-Hyun, Jin-Oh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2020
  • Social infrastructure facilities that have been under construction since the country's high-growth period are undergoing rapid aging, and, thus, safety assessments of large structures such as bridge tunnels, which can be directly linked to large-scale casualties in the event of an accident, are necessary. It is difficult to construct economical and efficient wireless smart sensor networks that improve structural health monitoring (SHM) because the existing wire sensors have a short signal reach. However, low-power wide-area networks (LPWANs) are becoming popular within the Internet of Things, and enable economical and efficient SHM. In this study, the technology trends of a wireless measuring sensor based on LoRa LPWANs were investigated, and an installation and maintenance plan for this type of sensor is proposed.