• Title/Summary/Keyword: Bridge

Search Result 10,959, Processing Time 0.032 seconds

Investigation of Resonance Occurrence Conditions by Dynamic Interaction Analysis between Arch bridge and KTX Trains (타이드 아치교와 KTX열차의 동적상호작용을 고려한 공진현상 분석)

  • Jang, Jung-Hwan;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2016
  • Resonance occurrence conditions are explored by performing dynamic interaction analysis of arch bridge and KTX trains. The target bridge is a 3D tied-arch bridge having span length of 120m. KTX trains consist of two power carriages, two power and passenger carriages and sixteen passenger carriages. When KTX trains run on the target bridge with the uniform speed of 100 to 500km/h, the dynamic responses of the bridge induced by moving trains are obtained from railway arch bridge-train interaction analysis. Two resonance conditions are presented and whether the resonance phenomena occur or not at the suspicious resonance velocities is rigorously investigated through bridge deflections and accelerations and their FFT analysis.

Rating of A Plate Girder Bridge through Load Test (강거더교의 재하시험을 통한 내하력평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 1998
  • This paper presents the results of the load test performed on a steel plate girder bridge and suggests the procedure of bridge rating through the load test. In general the girder bridge resist the loads as a complex three-dimensional structural system. Therefore the test results are analyzed for the longitudinal and the transverse response characteristics. The bending moments based on the beam analysis are compared with the measured values for longitudinal response characteristics. The lateral load distribution characteristics are assessed based on the load test results for transverse response characteristics. Also the rating of the test bridge is performed by using the suggested rating procedure which considers the actual response characteristics of the bridge. The suggested procedure can be used for understanding of actual response characteristics and evaluating load carrying capacity of the steel plate girder bridge.

  • PDF

Fuel Cell Generation System Combined Interleaved Full-bridge Converter with Half-bridge Inverter (인터리브드 풀브릿지 컨버터와 하프브릿지 인버터를 결합한 연료전지 발전 시스템)

  • Kim, Heon-Hee;Lee, Hee-Jun;Shin, Soo-Chul;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.518-519
    • /
    • 2012
  • This paper suggested a fuel cell generation system which combined interleaved full-bridge converter with half-bridge inverter. High ratio step-up converter is essential to use the power as general voltage source. Full-bridge converter has high efficiency and can boost the input voltage to high output with transformer. With series connected capacitors, interleaved full-bridge converter and half-bridge inverter are combined. Half-bridge inverter has two fewer switches compared to full-bridge type. Also, switching loss can be reduced. The performance is verified through simulation with 1.5[kW] fuel cell generation system.

  • PDF

Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device (진동제어장치를 이용한 고속열차-강아치교의 수직진동제어)

  • 고현무;강수창;유상희;옥승용;추진교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

THE RIGHT TIME AND RIGHT BUDGET TO MAINTAIN THE COMPONENTS OF BRIDGE

  • H. Ping Tserng;Chin-Lung Chung
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.810-819
    • /
    • 2007
  • Usually the status of a bridge is determined by its structural capability and material strength. Consequently a lot of researchers have studied the failure, the fatigue, and the deterioration of the structure in terms of the structural function of a bridge. However, the overall performance of a bridge may be affected simply by the damage of one of its components. Therefore this study utilized a systematic classification and statistical analysis based on the existing bridge inspection data collected in Taiwan to reach the following goals: (1) assess the performance distribution and deterioration rate for bearing and expansion joint of bridge; (2) find out the right time to do the preventive and essential maintenance for the component of bridge with an empirical method, and to decide what time and which component of a bridge will receive preventive maintenance or regular maintenance.

  • PDF

Design of Drilled Shafts Foundation by LRFD in Incheon Bridge Project (인천대교 민자구간의 대구경 현장타설 말뚝기초의 LRFD 설계 적용 사례)

  • Kim, Jeong-Hwan;Lee, Hyun-Gun;Shin, Hyun-Yang;Youn, Man-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.551-561
    • /
    • 2006
  • Incheon bridge project is to construct total 12km long bridges on the sea consist of 800m span length cable stayed bridge, approach bridge and viaduct bridge based on LRFD design specification. To design pile foundations by RCD of each bridge unit, total 4 number of preliminary full scale pile load tests with Osterberg cell method were carried out on the piles for testing. The test load was planned to more than the expected design ultimate capacity and about 29,000tons maximum load was recorded. From the interpretation of test results, design parameters are evaluated and applied to the design. Preliminary pile load test plan and detailed execution of pile load tests are introduced and summarized. The resistance factors are presented for pile design of Incheon Bridge Project in LRFD considering variation of ground conditions and number of test piles.

  • PDF

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Impact factors of an old bridge under moving vehicular loads

  • Liu, Yang;Yin, Xinfeng;Zhang, Jianren;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.353-370
    • /
    • 2013
  • This paper presents a new method to study the impact factor of an old bridge based on the model updating technique. Using the genetic algorithm (GA) by minimizing an objective function of the residuals between the measured and predicted responses, the bridge and vehicle coupled vibration models were updated. Based on the displacement relationship and the interaction force relationship at the contact patches, the vehicle-bridge coupled system can be established by combining the equations of motion of both the bridge and vehicles. The simulated results show that the present method can simulate precisely the response of the tested bridge; compared with the other bridge codes, the impact factor specified by the bridge code of AASHTO (LRFD) is the most conservative one, and the value of Chinese highway bridge design code (CHBDC) is the lowest; for the large majority of old bridges whose road surface conditions have deteriorated, calculating the impact factor with the bridge codes cannot ensure the reliable results.