• Title/Summary/Keyword: Breast cancer MCF-7 cell

Search Result 436, Processing Time 0.023 seconds

Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells

  • Seidi, Khaled;Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Abbasi, Mehran Mesgari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1119-1122
    • /
    • 2016
  • Background: Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Conclusions: Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.

Antiestrogen Interaction with Estrogen Receptors and Additional Antiestrogen Binding sites in Human Breast Cancer MCF-7 Cells

  • Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.579-585
    • /
    • 1997
  • To gain further insight into the mechanism of action of antiestrogens, we examined the interaction of antiestrogen with the estrogen receptor system and with estrogen- noncompetable antiestrogen binding sites. In addition to binding directly to the estrogen receptor, antiestrogens can be found associated with binding sites that are distinct from the estrogen receptor. In contrast to the restriction of estrogen receptors to estrogen target cells, such as those of uterus and mammary glands, antiestrogen binding sites are present in equal amounts in estrogen receptor-positive and -negative human breast cancer cell lines, such as MCF-7, T47D, and MDA-MB-231 that differ markedly in their sensitivity to antiestrogens. In order to gain greater insight into the role of these antiestrogen binding sites in the action of antiestrogens, we have examined the biopotency of different antiestrogens for the antiestrogen binding sites and that is CI628 > tamoxifen > trans-hydroxy tamoxifen > CI628M > H1285 > LY117018. This order of affinities does not parallel the affinity of these compounds for the estrogen receptor nor the potency of these compounds as antiestrogens. Indeed, compounds with high affinity for the estrogen receptor and greatest antiestrogenic potency have low affinities for these antiestrogen binding sites. Antiestrogenic potency correlates best with estrogen receptor affinity and not with affinity for antiestrogen binding sites. In summary, our findings suggested that interaction with the estrogen receptor is most likely the mechanism through which antiestrogens evoke their growth inhibitory effects.

  • PDF

Caveolin-1, Through its Ability to Negatively Regulate TLR4, is a Crucial Determinant of MAPK Activation in LPS-challenged Mammary Epithelial Cells

  • Wang, Xiao-Xi;Wu, Zheng;Huang, Hui-Fang;Han, Chao;Zou, Wei;Liu, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2295-2299
    • /
    • 2013
  • Background: To explore the role of caveolin-1(CAV-1) gene silencing on MAPK activation in lipopolysaccharide (LPS)-challenged human mammary epithelial cells. Methods: We established a MCF-10ACE of CAV-1 gene silencing from human mammary epithelial cell line MCF-10A by RNAi technology. DNA Microarray were used to detect the expression of inflammation-associated genes in MCF10ACE. Western blotting was used to examine the activation of MAPK in lipopolysaccharide(LPS)-challenged MCF-10A and MCF-10ACE. Moreover, immunofluorescence and Western bloting were performed to detect the co-localization of CAV-1 and toll-like receptor 4 (TLR4) in human mammary epithelial cells. Results: MCF-10ACE exhibited significant increases in inflammation-associated gene expression, especially IL-6 (~7-fold) and IL6R (~17-fold). In addition, LPS-induced p38 MAPK and JNK MAPK activation was significantly increased in MCF-10ACE. Furthermore, CAV-1 co-localized with TLR4 and appeared a negative correlation trend. Conclusion: CAV-1 gene silencing promotes MAPK activation via TLR4 signaling in human mammary epithelial cells response to LPS.

Non-Polar Myxococcus fulvus KYC4048 Metabolites Exert Anti-Proliferative Effects via Inhibition of Wnt/β-Catenin Signaling in MCF-7 Breast Cancer Cells

  • Park, Juha;Yoo, Hee-Jin;Yu, Ah-Ran;Kim, Hye Ok;Park, Sang Cheol;Jang, Young Pyo;Lee, Chayul;Choe, Wonchae;Kim, Sung Soo;Kang, Insug;Yoon, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.540-549
    • /
    • 2021
  • The Wnt/β-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/β-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, β-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/β-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/β-catenin pathway.

Anticarcinogenic Responses of MCF-7 Breast Cancer Cells to Conjugated Linoleic Acid (CLA) (식이성 Conjugated Linoleic Acid (CLA)가 유선암 세포(MCF-7)에서의 항암효과에 미치는 영향)

  • 문희정;이순재;박수정;장유진;이명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.418-427
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA, C18:2 $\omega$6), which is found abundantly in dairy products and meats. This study was peformed to investigate the anticarcinogenic effect of CLA in MCF-7 breast cancer cells. MCF-7 cell were treated with LA and CLA at the various concentrations of 15, 30, 60, 120 UM each. After incubation for 48 and 72 hours, cell proliferation, fatty acids incorporation into cell, peroxidation and activities of antioxidant enzymes were measured. Postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) were measured for the eicosanoids metabolism. There was no cell growth differences in both of LA and CLA treated MCF-7 cells at 48 hr incubation. Compared to LA, cell growth was decreased by CLA treatment according to increasing concentration at longer incubation times, respectively (p<0.05). Both of LA and CLA was incorporated into the cellular lipids 22~54% higher than in control but LA incorporation was not so linear as CLA according to concentration. Arachidonic acid (C20:4, $\omega$6) was synthesized after treatment of LA but did not in CLA, respectively. The lipid peroxide concentration in LA 120 $\mu$M group increased as 1.7 times as that in CLA 120 $\mu$M treated. The activities of antioxidant enzymes such as glutathione peroxidase and glutathione reductase were increased by the supplementation with CLA 120 $\mu$M at 72 hr incubation (p<0.001) compared to LA, otherwise activity of superoxide dismutase was not different in both. PGE$_2$ and TXA$_2$ levels were lower in condition of CLA treatments according to lower levels of arachidonic acids than those in LA treated group, respectively. Overall, the dietary CLA might change the MCF-7 cell growth by the changes of cell composition, production of lipid peroxide, activities of antioxidant enzymes and eicosanoid synthesis compared to dietary LA.

15d-PGJ2 Induces Apoptosis of MCF-7 and MDA-MB-231 Cells via Increased Intracellular Calcium and Activation of Caspases, Independent of ERα and ERβ

  • Muhammad, Siti Nur Hasyila;Mokhtar, Noor Fatmawati;Yaacob, Nik Soriani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3223-3228
    • /
    • 2016
  • Reports indicate that 15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2) has anticancer activities, but its mechanisms of action have yet to be fully elucidated. We therefore investigated the effects of 15d-PGJ2 on the human breast cancer cell lines, MCF-7 (estrogen receptor $ER{\alpha}+/ER{\beta}+$) and MDA-MB-231 ($ER{\alpha}-/ER{\beta}+$). Cellular proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays while apoptosis was determined by fluorescence microscopy and flow cytometry using annexin V-propidium iodide (PI) staining. ER expression was determined by Western blotting. Intracellular calcium was stained with Fluo-4 AM while intracellular caspase activities were detected with Caspase-$FLICA(R)$ and measured by flow cytometry. We showed that 15d-PGJ2 caused a significant increase in apoptosis in MCF-7 and MDA-MB-231 cells. $ER{\alpha}$ protein expression was reduced in treated MCF-7 cells but pre-incubation with the $ER{\alpha}$ inhibitor' ICI 182 780' did not affect the percentage of apoptotic cells. The expression of $ER{\beta}$ was unchanged in both cell lines. In addition, 15d-PGJ2 increased intracellular calcium ($Ca^{2+}$) staining and caspase 8, 9 and 3/7 activities. We therefore conclude that 15d-PGJ2 induces caspase-dependent apoptosis that is associated with an influx of intracellular $Ca^{2+}$ with no involvement of ER signaling.

The Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) on Proliferation of MCF-7 and Hec-1B Cell Lines

  • Ryu, Y.H.;Seo, D.S.;Ko, Y.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.94-94
    • /
    • 2003
  • Endocrine disrupters (EDs) are exogenous chemicals that interfere with the production, releasing, metabolism, excretion, binding of natural hormones, and whole endocrine systems. EDs are very dangerous since they are extremely stable, not easily degraded, and accumulated in fat and tissue. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is known as the most toxic EDs. Therefore, this study was conducted to investigate the effects of TCDD on proliferation of human breast cancer (MCF-7) and endometrial adenocarcinoma (Hec-1B) cells. 10, 100, and 1000 nM of TCDD were treated with steroid free condition. Viable cell counting, MTT, and BrdU assay was performed to investigate cell proliferation. Apoptosis was investigated using DNA laddering. Although, DNA fragmentation as the evidence of apoptosis was not detected, all of these cell lines showed restricted proliferation at 48 hrs after 100 and 1000 nM TCDD treatments. Recently, it has been reported that the expression of transforming growth factor $\beta$s (TGF-$\beta$s) are increased in TCDD treatment and also involved in regulation of cell cycle. Therefore, these results were considered that the decreased cell prolifcration by TCDD is related to the expression of TGF-$\beta$s.

  • PDF

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

  • Shrestha, Mohan;Park, Pil-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.487-498
    • /
    • 2016
  • Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

Orthosiphon pallidus, a Potential Treatment for Patients with Breast Cancer

  • Singh, Mukesh K.;Dhongade, Hemant;Tripathi, Dulal Krishna
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Objective: Orthosiphon pallidus (O. pallidus), which belongs to the Lamiaceae family, is a popular garden plant that is widely used for the treatment of various diseases, such as urinary lithiasis, fever, hepatitis, cancer and jaundice. The objective of the present work was to investigate the antioxidant free-radical scavenging and the anticancer activities of O. pallidus against human breast-cancer cell lines. Methods: The antioxidant activity of Orthosiphon pallidus aqueous extract (OPAE) was investigated using different models, such as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) models, as were the $Fe^+$ chelation, the hydroxyl radical and superoxide radical scavenging, and total reducing power activities. The anticancer activities of the extract were determined by using the 3-(4, 5- dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and the sulforhodamine (SRB) assays on the MCF-7 and the MDA-MB-231 cancer cell lines. Results: The aqueous Orthosiphon pallidus extract showed potent activity in in-vitro models. It significantly inhibited the scavenging of hydroxyl and superoxide radicals, but induced a remarkable $Fe^+$ chelation activity. For both cell lines, the percent cytotoxicity was found to increase steadily with increasing OPAE concentration up to $240{\mu}g/mL$. Conclusion: These results suggest that Orthosiphon pallidus has excellent antioxidant, antimicrobial, and anticancer activities against human breast-cancer cell lines.