• Title/Summary/Keyword: Breaking Waves

Search Result 232, Processing Time 0.028 seconds

An Experimental Study on Wave Energy Variation through Breaking Processes (쇄파과정에서의 파랑에너지 변화에 관한 실험연구)

  • Cho, Won-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.157-163
    • /
    • 1994
  • An experimental study of deep-water breaking waves is performed by nonlinear wave evolution as well as superposition of different wave frequencies. Two-dimensional and three-dimensional wave instabilities and breakings are observed in nonlinear wave evolution. The wave energy evolves with almost the same initial wave energy before breaking but decreases significantly after breaking process. Large spilling and plunging waves are generated near e expected breaking location by means of faster waves overtaking slow waves at a certain point. More energy loss in vigorous plunging breakers is observed through breaking process.

  • PDF

Research on Wave Kinematics and Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 관한 연구)

  • Lee, Soo-Lyong;Kang, Byung-Yoon;Lee, Byeong-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.18-24
    • /
    • 2007
  • When the wind blows strong, most waves are breaking at sea. Breaking waves occur by exceeding the limitation of wave steepness (wave height/wave length = 1/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at a two-dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies based on dispersion relation. This study investigates the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force at the breaking point and breaking region. We compare the regular wave load in a regular wave, which has same specifications (wave height, period and length), with the breaking waveload. Also, the experimental results of wave exciting force and particle velocity are investigated, by comparison with the analytic results using the potential theory.

Numerical Simulation of Irregular Waves Over a Shoal Using Parabolic Wave Model (포물형 파랑모형을 이용한 수중천퇴상 불규칙파의 수치모의)

  • 윤성범;이정욱;연영진;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.158-168
    • /
    • 2001
  • A numerical model based on the wide-angle parabolic approximation equation is developed for the accurate simulation of the directional spreading and partial breaking of irregular waves. This model disintegrates the irregular waves into a series of monochromatic wave components, and the simultaneous calculations are made for each wave component. Then, the computed wave components are superposed to get the wave height of irregular waves. To consider the partial breaking of irregular waves in the computation the amount of energy dissipation due to breaking is estimated using the superposed wave height. The accuracy of the developed model is tested by comparing the numerical results with the experimental measurements reported earlier. In the case of non-breaking waves a considerable accuracy of the model is observed for both regular and irregular waves. On the contrary it is found that the accuracy is significantly degenerated for the case of breaking waves. Some analyses for the accuracy degeneration are presented.

  • PDF

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.

NUMERICAL SIMULATION OF REFRACT10N-DIFFRACTION OF WAVES C ONSIDERING BREAKING-INDUCED CURRENTS

  • Yoon, Sung-Bum;Lee, Jong-In;Lee, Chang-hoon;Park, Joon-Young
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.203-213
    • /
    • 2002
  • A wide-angle parabolic approximation equation model considering the interaction between wave and current is employed to simulate the deformation of irregular waves over a submerged shoal. It is found that the model gives qualitative agreements with experimental data for the cases of breaking waves around the shoal. Thus, the effect of breaking-induced current on the refraction-diffraction of waves is well understood.

  • PDF

Detection of Sub-Breaking Waves around a Blunt Bow (비대선수 주위의 Sub-Breaking Wave 탐지기법)

  • Myung-Soo Shin;Young-Gill Lee;Eun-Chan Kim;Seung-Il Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 1992
  • Waves around a practical hull form and a series 60 model are computed by rectangular variable spacing and staggered flesh systems based on MAC(Marker and Cell) method. As a governing equation, the Euler equation is adopted. The comparison indicates that the computed waves are in good agreement with the measured results and that the MAC method is useful. On the other hand, a critical condition for the appearance of sub-breaking waves derived from the in viscid instability analysis is applied to the calculated flow field around a blunt bow. It is confirmed that the derived condition detects well the appearance of sub-breaking waves.

  • PDF

Numerical Simulation of Incipient Breaking Waves (초기 쇄파의 수치모사)

  • 김용직;김선기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.1-10
    • /
    • 2002
  • For the time-domain simulation of incipient breaking waves, usually the boundary integral method has been used so far, and it seems to be successful except a problem of too much computation time. The present paper shows a new computation technique for the simulation of breaking wave experiment. This technique uses the high-order spectral/boundary element method and the boundary integral method in sequence, and reduces the computation time remarkably. The wave generation and energy focusing process is efficiently simulated by the high-order spectral/boundary element method. Only the wave over-turning process is simulated by the boundary integral method. In the example calculation result, salient features of breaking waves such as high particle velocities and accelerations are shown.

Computational Study on the Characteristics of Nonlinear Wave Caused by Breaking Waves of Two-Dimensional Regular Periodic Wave (2차원 진행규칙파열에서의 쇄파현상에 따른 비선형성 파의 특성에 관한 수치적 연구)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.50-61
    • /
    • 1996
  • The breaking phenomenon of regular periodic waves generated by a numerical wave maker is simulated by finite-difference method which can cope with strong interface motions. The air and water flows are simultaneously solved in the time-marching solution procedure for the Navier-Stokes equation. A density-function technique is devised for the implemenation of the interface conditions. The accuracy is examined and applied to the simulation of two-dimensional breaking phenomena of periodic gravity waves.

  • PDF