• Title/Summary/Keyword: Breaking Process

Search Result 336, Processing Time 0.033 seconds

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄파력에 관한 연구)

  • 조효제;구자삼;이상길
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.220-226
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄과력에 관한 연구)

  • 조효제;구자삼;이상길
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Numerical Simulation of Incipient Breaking Waves (초기 쇄파의 수치모사)

  • 김용직;김선기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.1-10
    • /
    • 2002
  • For the time-domain simulation of incipient breaking waves, usually the boundary integral method has been used so far, and it seems to be successful except a problem of too much computation time. The present paper shows a new computation technique for the simulation of breaking wave experiment. This technique uses the high-order spectral/boundary element method and the boundary integral method in sequence, and reduces the computation time remarkably. The wave generation and energy focusing process is efficiently simulated by the high-order spectral/boundary element method. Only the wave over-turning process is simulated by the boundary integral method. In the example calculation result, salient features of breaking waves such as high particle velocities and accelerations are shown.

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

Study on Plunging Wave Breaking near Ship Bow (선수 주위의 플런징 쇄파 연구)

  • Koo, Bon-Guk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.122-127
    • /
    • 2021
  • Flow features near the ship bow such as wave breaking, small scale phenomena have been studied using numerical methods. In this study, the bow shaped wedge was adopted which is from previous paper [1, 2] and the conditions of simulation were Re = 1.64 × 105) and Fr = 2.93. Star CCM+, one of the commercial CFD programs has been used for the simulations. Simulation results such as wave profiles near the ship bow, shape of plunging jet, air entrainment, and wave breaking process have been compared with previous experimental and numerical studies. Overall results showed good agreements with previous studies. Profiles of bow waves showed that overturning jet has been created and broken along the wedge. Plunging wave breaking has been observed along the wedge and four components of plunging wave breaking process were shown. It is confirmed that velocity near the overturing jet significantly increased during plunging wave breaking.

The Relationship Between Childhood Abuse Experiences and School Rule-Breaking Behavior: A Mediating Effect of Adolescents' Self-Esteem (아동기 학대 경험과 청소년의 학교규칙 위반행동 간의 관계: 청소년의 자아존중감의 매개효과)

  • Zhen, Yu;Jahng, Kyung Eun;Kim, Eun Hye
    • Korean Journal of Childcare and Education
    • /
    • v.17 no.6
    • /
    • pp.93-108
    • /
    • 2021
  • Objective: This study examined the mediating effect of adolescents' self-esteem on the relationship between their childhood abuse experiences and school rule-breaking behavior. Methods: The research participants consisted of 1,748 adolescents aged from 15 to 16. Adolescents' school rule-breaking behavior and self-esteem were measured in 2016, whereas their childhood abuse experiences were measured in 2010. Panel data collected by the National Youth Policy Institute were analyzed using the bootstrapping technique and PROCESS Macro for SPSS. Results: The results of the study are as follows. First, the adolescents' childhood abuse experiences affected their school rule-breaking behavior. That is, the adolescents who were abused by their parents were at higher risk of breaking school rules later in life. Second, the adolescents' self-esteem mediated the relationship between their childhood abuse experiences and school rule-breaking behavior. The adolescents who were abused by their parents tend to have low levels of self-esteem and thereby break school rules. Conclusion/Implications: The present study shows the possibility that childhood abuse experiences lead to adolescents' problematic behaviors, such as school rule violation. It also indicates that it is necessary to provide counseling and therapeutic interventions for enhancing the self-esteem of adolescents of the at-risk group with childhood abuse experiences.

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

A Study on Cutting Behavior of Plate Glass Using a Piezoelectric Ceramics Actuator (압전 세라믹을 이용한 평판유리의 절단 거동에 관한 연구)

  • Lee K.W.;Jea T.J.;Choi S.D.;Jeong S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.249-250
    • /
    • 2006
  • Recently FPD(Flat Panel Display) is used in various field to display enormous information. So cutting technique of flat panel display is needed for producing variety display merchandises. In present, cutting methods of flat panel glass includes breaking process. But this process occurs many glass particles. This glass particles are directly related badness of merchandise and falling productivity. In this paper, to cut front substrate glass of LCD and to get optimized cutting condition are tried fur eliminating breaking process with developed glass cutting machine using a Piezoelectric ceramics actuator. It is known that the vibration of Piezoelectric Ceramic have effect in crack proceeding through the analysis of fracture section.

  • PDF

Prediction of Wave Breaking Using Machine Learning Open Source Platform (머신러닝 오픈소스 플랫폼을 활용한 쇄파 예측)

  • Lee, Kwang-Ho;Kim, Tag-Gyeom;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.262-272
    • /
    • 2020
  • A large number of studies on wave breaking have been carried out, and many experimental data have been documented. Moreover, on the basis of various experimental data set, many empirical or semi-empirical formulas based primarily on regression analysis have been proposed to quantitatively estimate wave breaking for engineering applications. However, wave breaking has an inherent variability, which imply that a linear statistical approach such as linear regression analysis might be inadequate. This study presents an alternative nonlinear method using an neural network, one of the machine learning methods, to estimate breaking wave height and breaking depth. The neural network is modeled using Tensorflow, a machine learning open source platform distributed by Google. The neural network is trained by randomly selecting the collected experimental data, and the trained neural network is evaluated using data not used for learning process. The results for wave breaking height and depth predicted by fully trained neural network are more accurate than those obtained by existing empirical formulas. These results show that neural network is an useful tool for the prediction of wave breaking.