• Title/Summary/Keyword: Breakdown test

Search Result 474, Processing Time 0.031 seconds

Effects of Transglutaminase on Pasting and Rheological Properties of Different Wheat Cultivars Blended with Barley or Soy Flour

  • Ahn, Hyun-Joo;Kim, Jae-Hyun;Chang, Yoon-Hyuk;Steffe, James F.;Ng, Perry K.W.;Park, Hee-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • The effects of transglutaminase (TG) on the pasting and rheological properties of different wheat cultivars ('Sharpshooter', 'Russ', and 'AcAriss') blended with barley (40%) or soy (20%) flour were investigated. In the rapid visco-analyzer (RVA) pasting profile, the addition of barley or soy flour to wheat flour samples induced a decrease in peak, trough, final viscosity, breakdown and setback values. However, TG treatment of these blends significantly increased peak viscosity and breakdown (p<0.05). In particular, TG treatment greatly increased the breakdown of wheat flour blended with soy flour, indicating that the cross-linking of proteins through TG may somehow be related to an increase in starch granule rupturing in pastes. Storage (G') and loss (G") moduli of the sample pastes increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. In all wheat cultivars, G', G", and $\eta$ were decreased by the addition of barley or soy flour, or TG treatment. Results suggest that protein cross-linking by TG can produce unique and improved properties in wheat flours blended with barley or soy flour.

Discharge Characteristics between Needle and Plane Electrodes in Water under Impulse Voltages (임펄스전압에 의한 침 대 평판전극에서 수중방전특성)

  • Choi, Jong-Hyuk;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper we describe discharge characteristics between needle-to-plane electrodes in water in various conditions such as different impulse voltages, polarities and water resistivities. Streamer corona is initiated at the tip of needle electrode and propagates toward plane electrode, and it experiences the final jump across the test gap. The branched channels of streamer coronas for lower water resistivities are much thicker and brighter than those for higher water resistivities at the same level of applied voltage. The negative streamer coronas not only have more branches but also widely spread out compared to the positive streamer coronas. A number of pulse-like currents ranging from some hundreds mA to a few A after streamer corona onset were produced with discharge developments. The time-lags-to breakdown for the positive polarity were remarkably shorter than those for the negative polarity. The pre-breakdown energy supplied into the test gap was inversely proportional to water resistivity.

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

AC Breakdown Voltage Characteristics of SF6/CF4 in Uniform field (평등전계에서 SF6/CF4 혼합가스의 AC절연내력 특성)

  • Hwang, Chung-Ho;Park, Woo-Shin;Kim, Nam-Ryul;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • The excellent dielectric properties of $SF_6$(sulfur hexafluoride) have lead to its wide range of application in the field of high voltage insulation. Because there has been some recent concern regarding the environmental impacts of $SF_6$ binary gas mixtures, with $SF_6$ as the main component, have been the subject of active research. Scientists have long been interested in the possible use of gaseous fluorocarbons, including $CF_4$ (Carton Tetrafluoride), in high voltage applications due to their inert character and high dielectric strength. This paper presents experimental results concerning the AC breakdown characteristics lot various mixtures of $SF_6/CF_4$ in a test chamber and 25.8 kV GIS (Gas Insulation Switchgear) at practical pressures (0.1-04 MPa) and gap lengths (0.5 mm, 1 mm) in a test chamber. In the result, it was observed that an increase in the dielectric strength is attained through the addition of $SF_6$ to $CF_4$. It is possible to make an environment friendly gas insulation material while maintaining the dielectric strength by combing $SF_6$ and $CF_4$ which generates a lower level of the "global warming" effect.

Characteristics of lightning Impulse Corona Discharges in SF6/CO2 Mixtures (SF6/CO2혼합기체 중에서 뇌임펄스코로나방전의 특성)

  • Lee, Bok-Hee;Baek, Young-Hwan;Oh, Sung-Kyun;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • This paper presents experimental results relating to the preliminary breakdown characteristics in $SF_6/CO_2$ gas mixtures under a highly non-uniform electric field. The impulse pre-breakdown developments are investigated by the measurements of corona current and light emission images. As a result, the preliminary breakdown development mechanisms for both the positive and negative polarities were fundamentally same. The first streamer corona was initiated at the tip of needle electrode, and the leaders developed with a stepwise propagation and bridged the test gap. The pause time of leader pulses in the positive polarity was significantly shorter than that in the negative polarity. Also, the time interval between the first streamer corona onset and breakdown in the negative polarity was much longer than that in the positive polarity. The discharge channel path in the positive polarity was zigzag, and the leader channel in the negative polarity was thicker and brighter than that in the positive polarity.

Electrical and Mechanical Properties of Epoxy/Micro-sized Alumina Composite and the Effect of Nano-sized Alumina on Those Properties

  • Park, Jae-Jun;Shin, Seong-Sik;Yoon, Chan-Young;Lee, Jae-Young;Park, Joo-Eon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.260-263
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared and the effects of alumina content on the electrical and mechanical properties were investigated in order to develop an insulation material for gas insulated switchgear (GIS). Nano-sized alumina (average particle size: 30 μm) was also incorporated into the epoxy/micro-sized alumina composite. An electrical insulation breakdown strength test was carried out in sphere-sphere electrodes and the data were estimated by Weibull statistical analysis. Tensile strength was measured at a crosshead speed of 10 mm/min using a universal testing machine. Alumina content was varied from 0 wt% to 70 wt%.). As micro-sized alumina content increased, insulation breakdown strength increased until 40 wt% alumina content and decreased after that content. The tensile strength of a neat epoxy system was 82.2 MPa and that value for 60 wt% alumina content was 91.8 MPa, which was 111.7% higher than inthe neat epoxy system. The insulation breakdown strength of micro-sized alumina (60 wt%)/nano-sized alumina (1 phr) glycerol diglycidyl ether (GDE) (1 phr) composite was 54.2 MPa, which was 116% higher than the strength of the system without nano-sized alumina.

Impulse breakdown Characteristics in SF6/N2, Gas Mixtures with a Temperature Variation (온도변화에 따른 SF6/N2 혼합가스의 임펄스 절연파괴특성)

  • Li, Feng;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.79-86
    • /
    • 2008
  • This paper presents the experimental results of impulse breakdown characteristics in $SF_6/N_2$ gas mixtures under a highly non-uniform electric field with a change in temperature. The test temperature ranges from -25[$^{\circ}C$] to 25[$^{\circ}C$]. The processes of impulse preliminary breakdown developments were analyzed by the measurements of current pulse and luminous signals. As a result, the temperature dependance of breakdown voltage for the negative polarity was much stronger than that for the positive polarity. When increasing the temperature, The leader stepping time for the negative polarity was shown to be longer than that for the positive polarity. The results presented in this paper can be used as a useful information in designing the gas insulation lines with prominent ability for lightning surge.

A Study on the Insulation Basis of Hts Transformer (초전도 변압기의 절연기반 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Yun, Mun-Soo;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.639-642
    • /
    • 2005
  • HTS Transformer developing is developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. Therefore, we prepared the model, that is Z continuous winding from Kapton insulated Cu tape for a small simulated the HTS transformer. For the development of electrical insulation design of a HTS transformer with Z continuous winding, we have been discussed insulation composition and investigated breakdown characteristics such as breakdown of liquid $N_2(LN_2)$, polymer and surface flashover on FRP and breakdown-surface combination in $LN_2$. Also we have been designed and manufactured a bobbin that has spiral slot for the Z continuous winding. The Z continuous winding mini-model from Kapton film insulated Cu tape for simulated 22.9kV class HTS transformer has been constructed using 0.1 % breakdown strength obtained by Weibull distribution. The widing model was measured their insulation characteristics such as ac (50kV, 1min) and impulse (154kV, $1.2\times50{\mu}s$ full wave, 3 times) withstand test and its excellent performance was confirmed.

  • PDF

Insulation rehabilitation of water tree aged cables by silicone treatment (실리콘 처리에 의한 수트리 열화케이블의 절연회복)

  • 김주용;송일근;한재홍;이동영;문재덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • This paper presents the results of performance evaluation of silicone treatment technique which was developed for the insulation rehabilitation of water tree aged XLPE power cables. We treated the water tree aged 325 [$\textrm{mm}^2$] CN/CV cables with silicone, and then analyzed the degree of insulation rehabilitation as a function of time. AC breakdown test was conducted to evaluate insulation rehabilitation. The diagnosis test using relaxation current measurement and the characteristic analysis of insulation were also performed to estimate silicone treated cable. AC breakdown strength of silicone treated cable for one year was increased, resulting from the chemical reaction between silicone fluid and water. This experiment showed that the silicone treatment technique was effective for insulation rehabilitation of the water tree aged cables.

  • PDF