• 제목/요약/키워드: Breakdown stress

검색결과 220건 처리시간 0.026초

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

A Study on the Insulation Characteristics for Stator Windings of IGBT PWM Inverter-Fed Induction Motors

  • Hwang, Don-Ha;Kang, Dong-Sik;Kim, Yong-Joo;Lim, Tae-Hoon;Bae Sung-Woo;Kim Dong-Hee;Ro Chae-Gyun
    • Journal of Power Electronics
    • /
    • 제3권3호
    • /
    • pp.159-166
    • /
    • 2003
  • The winding insulation of low-voltage induction motors in adjustable-speed drive system with voltage-fed Inverters is substantially stressed due to the uneven voltage distribution and excessive voltage stress (dv/dt), which result in the premature insulation breakdown In this paper, the detailed insulation test results of 26 low-voltage induction motors are presented. Six different types of insulation techniques are applied to 26 motors. The insulation characteristics are analyzed with partial discharge, discharge inception voltage, AC current, and dissipation factor tests Also, insulation breakdown tests by high voltage pulses are performed, and the corresponding breakdown voltages obtained.

직류 전계하 LLDPE/EVA혼합필름의 절연파괴특성

  • 고시현;김형주;이종필;신현택;이충호;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2000
  • Polyethylene, has long history and is widely used, was researched due to good electrical properties by many authors. But PE under stress has the critical defects of space charge accumulation and tree growth, so various methods such as catalyst, additives and blend to improve these problems have been execute, of which we selected blending method. As in our previous papers we investigated electrical conduction, dielectric and AC dielectric breakdown characteristics, we did DC dielectric breakdown characteristics in this paper. We selected pure LLDPE, pure EVA and LLDPE films mixed with EVA as specimens, which were mixed with the weight percentages of 50, 60, 70 and 80[wt%] to be thin film. DC applying voltage speed was 500[V/sec]. The relation between dielectric breakdown characteristics and the variations of super structure due to mixing was investigated, and especially trap level at amorphous region, threshold energy increment of conductive electron at free volume were considered.

  • PDF

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제41권8호
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.

Electrical Properties and Stability of La2O3 Doped ZnO-Pr6O11-Based Varistor Ceramics (La2O3 Doped ZnO-Pr6O11계 바리스터 세라믹스의 전기적 성질 및 안정성)

  • Nahm, Choon-Woo
    • Journal of the Korean Ceramic Society
    • /
    • 제43권6호
    • /
    • pp.383-388
    • /
    • 2006
  • The varistor properties and DC accelerated aging characteristics of $ZnO-Pr_{6}O_{11}-CoO-Cr_{2}O_{3}$-based varistors were investigated at different $La_{2}O_3$ contents in the range of $0{\sim}2.0mol%$. The varistors doped with 0.5 mol% $La_{2}O_3$ exhibited good nonlinearity, with 81.6 in nonlinear coefficient. Increasing the $La_{2}O_3$ content further to 2.0 mol% caused the sintered density to increase, and the breakdown voltage and nonlinearity to decrease abruptly. The varistors with 0.5 mol% $La_{2}O_3$ exhibited the high electrical stability, with -1.14% in variation rate of breakdown voltage, -3.7% in variation rate of nonlinear coefficient, and +100% in variation rate of leakage current for specified DC accelerated aging stress condition (95% of breakdown voltage/$150^{\circ}C$/24 h).

Thermal Bubble-Initiated Breakdown Mechanism of $LN_2$ (액체질소에서의 열적 기포에 의한 절연파괴기구)

  • Kwak, Dong-Joo;Choo, Young-Bae;Ryu, Kang-Sik;Ryu, Wdd-Kyung;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.302-305
    • /
    • 1989
  • Ac, dc and impulse dielectric strengths of $LN_2$ at 0.1MPa were investigated experimentally, referring to the behavior of thermally induced bubble, which might be generated at quenching condition of immerged-cooling superconducting devices. The experimental results show that the bubble shape under electric field stress depends significantly on the applied voltage waveform. With ac voltage, the breakdown voltage of $LN_2$ falls suddenly near to one of the saturated gas at the threshold heater power of boiling onset. In control to this, the reduction of impulse breakdown voltage with heater peter is gradual and the time to breakdown depends on the existence of thermal bubble. These breakdown characteristics can be explained satisfactorily by the bubble behavior under electric fields.

  • PDF

The Effect of Butt gaps on Dielectric Strength of Taped Insulation in Superconducting Cable

  • Andreev, Alexander-M;Kim, Soo-Yeon;Lee, In-Ho;Kim, Do-Woon;Shin, Doo-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • 제5권1호
    • /
    • pp.128-132
    • /
    • 2003
  • This paper discusses several electrical properties of tape-type insulation impregnated with liquid nitrogen ($LN_2$) in superconducting cable. Synthetic polypropylene laminated paper has been tested for its short-term breakdown strength and partial discharge(PD) characteristics under AC voltage. furthermore, the effect of winding parameter on breakdown strength, PD incepti on and extinction electrical stress with different test samples are discussed.

Characteristics Analysis of Reactor Considering Magnetization Saturation (포화특성을 고려한 리액터의 특성 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제26권2호
    • /
    • pp.92-98
    • /
    • 2012
  • As the increasing of non-linear load, filter is coming to be high gradually in order to reduce the harmonic which occurs from the power conversion. The maintenance of passive filter is easier than active filter and it has been widely used in the industrial site. This passive filter is connected with condenser and reactor by series and parallel and it is installed at the front of nonlinear load. The breakdown of passive filter occurs frequently at the reactor side rather than capacitor. So the breakdown cause close examination is necessary. In this paper, we analyzed that the electric stress of reactor which is considered magnetization saturation at the passive filter. We confirm that the reduction of harmonics and the electric stress of reactor is influenced by the linear and non-linear element of reactor.

A Study on Electrical Accident of Distributing Cable Termination Considering PL Law Environment (PL법 환경을 고려한 배전 케이블 종단부의 전기적 사고 연구)

  • Kim, Sang-Hyun;Choi, Jae-Hyeong;Choi, Jin-Wook;Baek, Seung-Myeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제22권2호
    • /
    • pp.178-183
    • /
    • 2009
  • This paper introduces experimental investigates of an accident pattern for the distributing cross linking-polyethylene(XLPE) cable terminations considering product liability(PL) law environment. The influence of defects such as thickness and length decrease of XLPE, an impurity on XLPE and the gap between stress-con of housing and semi-conductor on insulating properties of the termination have been studied. The thickness and length decrease of XLPE decrease ac breakdown strengths. Breakdown traces of XLPE that is damaged by knife displayed ellipse shape. The gap of between stress-con and semiconductor deteriorates dielectric strength of XLPE seriously.

Electrical Insulation Design of a 154kV-Class HTS Power Cable

  • Choi, Jin-Wook;Kwag, Dong-Soon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • 제11권2호
    • /
    • pp.25-28
    • /
    • 2009
  • A 154kV class high-temperature superconducting (HTS) power cable system is developing in Korea. For insulation design of this cable, it is important that study on cryogenic electrical insulation design to develop the cold dielectric type HTS cable because the cable is operated under the high voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the cold dielectric type HTS cable adopting the partial discharge-free design under ac stress, based on the experimental results such a ac breakdown strength, partial discharge inception stress, $V_{ac}$-t characteristics, $V_{imp}$-n characteristics, and impulse breakdown strength of liquid nitrogen/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized liquid nitrogen.