• Title/Summary/Keyword: Breakdown field

Search Result 795, Processing Time 0.028 seconds

Electrical Breakdown In flames

  • Uhm, Han S.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • Properties of electrical discharge in flames and influence of plasma electrons on gas neutrals are investigated by making use of the ionization cross section of air. Frames have three distinctive features. They are hot, emit light and are weakly ionized. We investigate influence of these three characteristics of flames on the electrical breakdown. It is found that the breakdown electric field in flames is inversely proportional to the flame temperature T$\_$g/, thereby easily generating plasmas in flames. A swarm of low-energy electrons in flames would allow a significant population of electronically excited states of flame molecules to be formed. Therefore, the analysis shows that the electronic excitation of flame molecules may also considerably reduce the breakdown field. Plasma electrons generate atomic oxygen by the electron attachment of oxygen molecules in high-pressure flames. These oxygen atoms are the most reactive radicals in flames for material oxidation.

  • PDF

Breakdown and Destruction Characteristics of the CMOS IC by High Power Microwave (고출력 과도 전자파에 의한 CMOS IC의 오동작 및 파괴 특성)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1282-1287
    • /
    • 2007
  • We investigated the damage of the CMOS IC which manufactured three different technologies by high power microwave. The tests separated the two methods in accordance with the types of the CMOS IC located inner waveguide. The only CMOS IC which was located inner waveguide was occurred breakdown below the max electric field (23.94kV/m) without destruction but the CMOS IC which was connected IC to line organically was located inner waveguide and it was occurred breakdown and destruction below the max electric field. Also destructed CMOS IC was removed their surface and a chip condition was analyzed by SEM. The SEM analysis of the damaged devices showed onchuipwire and bondwire destruction like melting due to thermal effect. The tested results are applied to the fundamental data which interprets the combination mechanism of the semiconductors from artificial electromagnetic wave environment and are applied to the data which understand electromagnetic wave effects of electronic equipments.

Investigation of Curvature Effect on Planar InP/InGaAs Avalanche Photodiodes for Edge Breakdown Suppression (경계항복 억제를 위한 평판형 InP/InGaAs 애벌랜치 포토다이오드의 곡률 효과 분석)

  • 이봉용;정지훈;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.206-209
    • /
    • 2002
  • With the progress of semiconductor processing technology, avalanohe photodiodes (APDs) based on InP/InGaAs are used for high-speed optical receiver modules. Planar-type APDs give higher reliability than mesa-type APDs. However, Planar-type APDs are struggled with a problem of intensed electric field at the junction curvature, which causes edge breakdown phenomena at the junction periphery. In this paper, we focused on studying the effects of junction curvature for APDs performances by different etching processes followed by single diffusion to from p-n junction. The performance of each process is characterized by observing electric field profiles and carrier generation rates. From the results, it can be understood to predict the optimum structure, which can minimize edge breakdown and improve the manufacturability.

  • PDF

An analysis of new IGBT(Insulator Gate Bipolar Transistor) structure having a additional recessedwith E-field shielding layer

  • Yu, Seung-Woo;Lee, Han-Shin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.247-251
    • /
    • 2007
  • The recessed gate IGBT has a lower on-state voltage drop compared with the DMOS IGBT, because there is no JFET resistance. But because of the electric field concentration in the corner of the gate edge, the breakdown voltage decreases. This paper is about the new structure to effectively improve the Vce(sat) voltage without breakdown voltage drop in 1700V NPT type recessed gate IGBT with p floating shielding layer. For the fabrication of the recessed gate IGBT with p floating shielding layer, it is necessary to perform the only one implant step for the shielding layer. Analysis on the Breakdown voltage shows the improved values compared to the conventional recessed gate IGBT structures. The result shows the improvement on Breakdown voltage without worsening other characteristics of the device. The electrical characteristics were studied by MEDICI simulation results.

  • PDF

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Statistical Analysis of wear out in electrically stressed Laser Assisted PECVD SiN Films (Laser Assisted PECVD SiN막의 경시적 열화에 관한 시간 의존성의 통계적 고찰)

  • Kim, Chun-Sub;Kim, Yong-Woo;Yi, Seung-Hwan;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.177-179
    • /
    • 1990
  • Recently, it is reported that the behaviour of PECVD under high electric field and current condition has a major effect on MNS device degradation. In this paper, we evaluated the breakdown and TDDB characteristics of Laser assisted PECVD SiN films which is introduced new deposited method. And also, long term insulator breakdown reliability is described by examing time dependent dielectric breakdown under positive voltage. Failure tines against electric field are examined and acceleration factors are obtained for each case. From these data, breakdown wearout limitation for Laser Assisted PECVD SiN film can be characterized.

  • PDF

Analysis of Dielectric Breakdown of Hot SF6 Gas in a Gas Circuit Breaker

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Song, Ki-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.264-269
    • /
    • 2010
  • This paper presents the analysis of the dielectric characteristics of a hot $SF_6$ gas in a gas circuit breaker. Hot gas flow is analyzed using the FVFLIC method considering the moving boundary, material properties of real $SF_6$ gas, and arc plasma. In the arc model, the re-absorption of the emitted radiation is approximated with the boundary source layer where the re-absorbed radiation energy is input as an energy source term in the energy conservation equation. The breakdown criterion of a hot gas is predicted using the critical electric field as a function of temperature and pressure. To validate the simulation method, breakdown voltage for a 145kV 40kA circuit breaker was measured for various conditions. Consistent results between the simulation and experiment were confirmed.

Electrical Breakdown in Flames

  • Han, S.Uhm
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.187-187
    • /
    • 2000
  • Properties of electrical discharge in flames are investigated by making use of the ionization cross section of air. Fames have three distictive features. They are hot, emit light and are weakly ionized. We investigate influence of these three characteristics of flames on the electrical breakdown. It is found that the breakdown electric field in flames is inversely proportional to the flame temperature, thereby easily generating plasmas in flames. A swarm of low-energy electrons in flames would allow significant population of electronically excited states of flame molecules to be formed. Therefore, the analysis shows that the electronic excitation of flame molecules may also considerably reduce the breakdown field. Plasma electrons generate atomic oxygens by the electron attachment of oxygen molecules in high-pressure flames. These oxygen atoms are the most reactive radicals in flames for material oxidation. How are you and your family in this new year\ulcorner Professor Choi! I plan to go back Korea on February 6. All my family members are fine and have good time because I am here. Once I am in Korea, I will call you. I am always grateful for your helpful hand. Thank you so much.

  • PDF

Optimal Design of Field Ring for Power Devices (고 내압 전력 소자 설계를 위한 필드 링 최적화에 관한 연구)

  • Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000V.

The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas ($SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석)

  • 조국희;이동준;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.14-19
    • /
    • 2001
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest, that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference on the insulation design of domestic GIS.

  • PDF