• 제목/요약/키워드: Brazing characteristics

검색결과 68건 처리시간 0.027초

안경테용 P-Ti와 α+β-Ti의 전기저항땜질 특성에 관한 연구 (A Study on the Characteristics for Electric Resistance Brazing of Eyewear Frame P-Ti and α+β-Ti)

  • 박정식;박은규
    • 한국안광학회지
    • /
    • 제12권4호
    • /
    • pp.5-8
    • /
    • 2007
  • 티타늄과 그 합금은 경량성, 우수한 기계적 성질 그리고 우수한 내식성 때문에 주요한 안경테 소재로 사용되고 있다. 본 연구에서는 안경테 소재로 사용되고 있는 순 티타늄(P-Ti)과 ${\alpha}$+${\beta}$-티타늄(${\alpha}$+${\beta}$-Ti)을 이용하여 전기저항땜질 장치를 이용하여 접합조건의 변화에 따른 접합부의 특성 변화에 대하여 조사하였다. P-Ti 및 ${\alpha}$+${\beta}$-Ti 모두 접합부 근처에서 땜질 전류의 증가에 따른 결정립의 조대화에 의해 경도의 감소가 나타났으며, 특히 ${\alpha}$+${\beta}$-Ti 보다 P-Ti에서 경도의 감소가 크게 나타났다. ${\alpha}$+${\beta}$-Ti에서 경도값의 저하가 적은 것은 미세한 ${\alpha}$+${\beta}$ 층상조직의 형성에 의한 효과인 것으로 판단된다.

  • PDF

Fe-Cr-AI-Y합금에서 브레이징 접합부의 고온산화거동 (High Temperature Oxidation Behavior of the Brazed Joint in Fe-Cr-Al-Y Alloy)

  • 문병기;최철진;박원욱
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.201-208
    • /
    • 1997
  • 본 연구에서는 배기 가스 촉매정화용 금속담체 지지체의 접합특성을 향상시키기 위하여, 브레이징 접합부의 고온내산화성에 미치는 브레이징 합금원소의 영향을 고찰하였다. 브레이징은 Ni계 합금인 BNi-5 분말(Ni-Cr-Si계합금)과 MBF-50 foil(Ni-Cr-Si-B계 합금)을 사용하여 $1200^\circC$의 진공중에서 행하였다. 약 1-1.5 wt%의 B을 함유한 MBF-50으로 브레이징된 시편이 BNi-5로 브레이징된 시편에 비해 내산화성이 떨어지는 것으로 나타났으며. 이것은 합금/브레이징 계변을 따라 형성된 Kirkendall void를 통한 산소의 빠른 침투로 인한 것으로 생각된다.

  • PDF

비정질 이원계 합금 Zr-Be 용가재를 이용한 지르칼로이-4의 브레이징 타당성 검토 (A Feasibility Study on the Brazing of Zircaloy-4 with Zr-Be Binary Amorphous Filler Metals)

  • 고진현;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • 제17권4호
    • /
    • pp.26-31
    • /
    • 1999
  • An attempt was made in this study to investigate the brazing characteristics of Zr-Be binary amorphous alloys for the development of a new brazing filler metal for joining Zircaloy-4 nuclear fuel cladding tubes. This study was also aimed at the feasibility study of rapidly solidified amorphous alloys to substitute the conventional physical vapor-deposited(PVD) metallic beryllium. The $Zr_{1-x}Be_{x}$($0.3\leq$x$\leq0.5$) binary amorphous alloys were produced in the ribbon form by the melt-spinning method. It was confirmed by x-ray diffraction that the ribbons were amorphous. The amorphous. the amorphous alloys were used to join bearing pads on Zircaloy-4 nuclear fuel cladding tubes. Using Zr-Be amorphous alloys as filler metals, it was found that the reduction in the tube wall thickness caused by erosion was prevented. Especially, in the case of using $Zr_{0.65}Be_{0.35}$ and $Zr_{0.7}Be_{0.3}$ amorphousalloys, the smooth and spherical primary $\alpha$-Zr particles appeared in the brazed layer, which was the most desirable microstructure from the corrosion-resistance standpoint.

  • PDF

WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향 (The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

급속응고된 비정질 Zr-Be 합금 용가재를 이용한 Zircaloy-4의 브레이징 특성 (Brazing Characteristics of Zircaloy-4 Using Rapidly Solidified Amorphous Zr-Be Alloy Filler Metals)

  • 김상호;고진현;박춘호;김성규
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.140-145
    • /
    • 2002
  • This study was conducted to investigate the brazing characteristics between Zircaloy-4 nuclear fuel cladding tubes and bearing pads with filler metals of amorphous $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.5) binary alloy, in which they were produced in the ribbon form by the melt-spinning metod. The crystallization behavior, stability, hardness and micro-structure of brazed zone were examined by X-ray diffraction, differential scanning calorimetry, micro-Vickers hardness test, optical microscopy, and transmission electron microscopy. $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.4) amorphous alloys were crystallized to $\alpha$-Zr with increasing the temperature, and the rest were transformed to ZrBe$_2$at higher temperatures. On the other hand, $Zr_{1-x}Be_x$(0.4$\leq$x$\leq$0.5) amorphous alloys were crystallized to $\alpha$-Zr and ZrBe$_2$, simultaneously. The thickness of the layer brazed with amorphous alloy was increased with increasing the beryllium content due to the higher diffusion of Be. The morphology of brazed layer with PVD Be filler metal showed dendrite while that brazed with amorphous alloys appeared globular. Micro-Vickers hardness of brazed zone increased as the beryllium content of filler metal was decreased.

Possibility of Al-Si Brazing Alloys for Industrial Microjoining Applications

  • Sharma, Ashutosh;Jung, Jae Pil
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.35-40
    • /
    • 2017
  • Aluminium alloys have been used widely since hundreds of years in automotive joining. Silicon is an excellent alloying element that increases the fluidity, depresses the melting temperature and prevents shrinkage defects during solidification, and is cost effective raw material. In recent few decades, research on cast Al-Si alloys has been expanding globally in military, automobile and aerospace industries. These alloys are good wear and corrosion resistant which depends on processing parameters and service conditions. However, the formation of big Si-needles in Al-Si alloys is a serious issue in joining industries. Silicon modification treatments are generally carried out to improve their durability and strength. This paper covers an elaborative study of various Al-Si alloys, the modification strategies to refine the Si-needles, effect of processing parameters and joining characteristics for automotive applications.