Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.3.035

Possibility of Al-Si Brazing Alloys for Industrial Microjoining Applications  

Sharma, Ashutosh (Dept. of Materials Science and Engineering, University of Seoul)
Jung, Jae Pil (Dept. of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.3, 2017 , pp. 35-40 More about this Journal
Abstract
Aluminium alloys have been used widely since hundreds of years in automotive joining. Silicon is an excellent alloying element that increases the fluidity, depresses the melting temperature and prevents shrinkage defects during solidification, and is cost effective raw material. In recent few decades, research on cast Al-Si alloys has been expanding globally in military, automobile and aerospace industries. These alloys are good wear and corrosion resistant which depends on processing parameters and service conditions. However, the formation of big Si-needles in Al-Si alloys is a serious issue in joining industries. Silicon modification treatments are generally carried out to improve their durability and strength. This paper covers an elaborative study of various Al-Si alloys, the modification strategies to refine the Si-needles, effect of processing parameters and joining characteristics for automotive applications.
Keywords
Al alloys; Brazing; Welding; Silicon; Casting; Automotive;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 I. J. Polmear, "Light alloys: From Traditional Alloys to Nanocrystals", 4th Ed., pp. 16-26, Elsevier, Butterworth Heinemann (2006).
2 B. Altshuller, "Aluminum Brazing Handbook", 4th Ed., pp. 24-32, The Aluminum Association, Inc., Washington D.C. (1990).
3 R. S. Rana, R. Purohit, and S. Das, "Review on the Influence of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys", Int. J. Sci. Res. Pub., 2 (6), 1 (2012).
4 W. S. Miller, and L. Zhuang, "Recent Development in Aluminium Alloys for the Automotive Industry", Mater. Sci. Eng. A, 280 (1), 37-49 (200).   DOI
5 M. D. Sabatino, S. Akhtar, and L. Arnberg, "State-of-The-Art Characterization Tools for Al Foundry Alloys", Metall. Sci. Technol., 30(1), 22 (2012).
6 H. Okamoto, "Desk Handbook: Phase Diagram for Binary Alloys", ASM International, United States (2010).
7 W. D. Callister, and D. G. Rethwisch, "Fundamentals of Materials Science and Engineering: An Integrated Approach", 4th Ed., pp. 542-594, John Wiley and Sons Inc., Wiley, USA (2012).
8 J. P. Mercier, G. Zambelli, and W. Kurz, "Introduction to Materials Science, Series in applied chemistry and materials sciences", Elsevier, Paris (2002).
9 Y. Birol, "A Novel Al-Ti-B Alloy For Grain Refining Al-Si Foundry Alloys", J. Alloy Compd., 486, 219 (2009).   DOI
10 T. N. Ware, A. K. Dahle, S. Charles, and M. J. Couper, "Effect of Sr, Na, Ca & P on the Castability of Foundry Alloy A356.2", ASM Materials Solutions Conference & Exposition, Proc. 2nd International Aluminium Casting Technology Symposium (IACTS), Columbus, Ohio, USA (2002).
11 K. Nogita, S. D. McDonald, and A. K. Dahle, "Eutectic Modification of Al-Si Alloys with Rare Earth Metals", Mater. Trans., 45(2), 323 (2004).   DOI
12 A. Darvishi, A. Maleki, M. M. Atabaki, and M. Zargami, "The Mutual Effect of Iron and Manganese on Microstructure and Mechanical properties of Aluminium-Silicon Alloy", Association of Metallurgical Engineers of Serbia, MJoM, 16(1), 11 (2010).
13 P. Maldovan, and G. Popescu, "The Grain Refinement of 6061 Aluminium Using Al-5Ti-1B and Al-3Ti-0.15C Grain Refiners", JOM, 59-61 (2004).
14 S. R. Jain, Y. Vijayakumar, and S. V. Shankar, "Importance of Grain Refinement and Modification of Aluminium Alloys", IJSR, 3(6), 815 (2014).
15 S. A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, T. Saeid, and H. Assadi, "Evaluation of Microstructure and Wear Behaviour of Friction Stir Processed Cast Aluminum Alloy", Mater. Charact., 63, 90 (2012).   DOI
16 A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht, and K. Das, "Development of Lead Free Pulse Electrodeposited Tin Based Composite Solder Coating Reinforced with ex-situ Cerium Oxide Nanoparticles", J. Alloy. Compd., 574, 609 (2013).   DOI
17 A. Sharma, S. Bhattacharya, S. Das, and K. Das, "Fabrication of Sn-Ag/$CeO_2$ Electro-Composite Solder by Pulse Electrodeposition", Metall. Mater. Trans. A., 44A, 5587 (2013).
18 A. Sharma, H. R. Sohn, and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A., 47A, 494 (2016).
19 S. Bhattacharya, A. Sharma, S. Das, and K. Das, "Synthesis and Properties of Pulse Electrodeposited Lead-Free Tin-Based Sn/$ZrSiO_4$ Nanocomposite Coatings", Metall. Mater. Trans. A., 47(3), 1292 (2016).   DOI
20 A. Sharma, M. H. Roh, and J. P. Jung, "Effect of $La_2O_3$ Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy", JMEPEG, 25, 3538 (2016).   DOI
21 A. Sharma, S. Das, and K. Das, "Electrochemical Corrosion Behavior of $CeO_2$ Nanoparticle Reinforced Sn-Ag Based Lead Free Nanocomposite Solders in 3.5 wt.% NaCl Bath", Surf. Coat. Technol., 261, 235 (2015).   DOI
22 D. H. Jung, A. Sharma, D. U. Lim, J. H. Yun, and J. P. Jung, "Effects of AlN Nanoparticles on the Microstructure, Solderability, and Mechanical Properties of Sn-Ag-Cu Solder", Metall. Mater. Trans. A., 48(9), 4372 (2017).
23 A. Sharma, D. E. Xu, J. Chow, M. Mayer, H. R. Sohn, and J. P. Jung, "Electromigration of Composite Sn-Ag-Cu Solder Bumps", Electron. Mater. Lett., 11(6), 1072 (2015).   DOI
24 A. Sharma, B. G. Baek, and J. P. Jung, "Influence of $La_2O_3$ Nanoparticle Additions on Microstructure, Wetting, and Tensile Characteristics of Sn-Ag-Cu Alloy", Mater. Des., 87, 370 (2015).   DOI
25 H. F. El-Labban, M. Abdelaziz, and E. R. I. Mahmoud, "Preparation and Characterization of Squeeze Cast-Al-Si Piston Alloy Reinforced by Ni and Nano-$Al_2O_3$ Particles", J. King Saud Univ. Eng. Sci., 28(2), 230 (2014).   DOI
26 H. Choi, and X. Li, "Refinement of Primary Si and Modification of Eutectic Si for Enhanced Ductility of Hypereutectic Al-20Si-4.5Cu Alloy with Addition of $Al_2O_3$ Nanoparticles", J. Mater. Sci., 47, 3096 (2012).   DOI
27 A. Sharma, Y. S. Shin, and J. P. Jung, "Influence of Various Additional Elements in Al Based Filler Alloys For Automotive and Brazing Industry", J. Welding and Joining., 33(5), 23 (2015).   DOI
28 A. Sharma, and J. P. Jung, "Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 1 (2015).   DOI
29 A. Sharma, S. H. Lee, H. O. Ban, Y. S. Shin, and J. P. Jung, "Effect of Various Factors on the Brazed Joint Properties in Al Brazing Technology", J. Welding and Joining., 34(2), 30 (2016).   DOI
30 A. Sharma, M. H. Roh, D. H. Jung, and J. P. Jung, "Effect of $ZrO_2$ Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications", Metall. Mater. Trans. A., 47(1), 510 (2016).   DOI
31 A. Sharma, D. U. Lim, and J. P. Jung, "Microstructure and Brazeability of SiC Nanoparticles Reinforced Al-9Si-20Cu Produced by Induction Melting", Mater. Sci. Technol., 32(8), 773 (2016).   DOI
32 A. K. Srivastava, and A. Sharma, "Advances in Joining and Welding Technologies for Automotive and Electronic Applications", American Journal of Materials Engineering and Technology, 5(1), 7 (2017).   DOI
33 W. Dai, S.-B. Xue, F. Ji, J. Lou, B. Sun, and S. Q. Wang "Brazing 6061 aluminum alloy with Al-Si-Zn filler metals containing Sr", Int. J. Miner. Met. Mater., 20, 365 (2013).   DOI
34 Z. Niu, J. Huang, H. Yang, S. Chen, and X. Zhao "Preparation and properties of a novel Al-Si-Ge-Zn filler metal for brazing aluminum", J. Mater. Eng. Perform., 24(6), 2327 (2015).   DOI
35 D.M. Jacobson, G. Humpston, and S. P. S. Sangha "A New Low Melting Point Aluminium Braze", Welding Research Supplement, 75(8), 243s (1996).
36 A. Sharma, S. Mallik, N. N. Ekere, and J. P. Jung, "Printing Morphology and Rheological Characteristics of Lead-Free Sn-3Ag-0.5Cu (SAC) Solder Pastes", J. Microelectron. Packag. Soc., 21(4), 83 (2014).   DOI