• 제목/요약/키워드: Braking system

검색결과 755건 처리시간 0.028초

제동장치에서 고주파수 PWM 제어에 의한 맥동특성 연구 (Study on the Characteristics of Surge Pressure by High Frequency PWM Control in Braking System)

  • 김병우
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.109-114
    • /
    • 2008
  • The solenoid valve of ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz on-off control. When the on-off valve is switched from open state to closed state, there are braking force deterioration, noise and vibration due to surge pressure in the wheel cylinder. In this study, identifies surge pressure in the braking process of ABS, and investigates the way to reduce the phenomenon. To reduce the surge pressure, PWM(Pulse Width Modulation) control with high frequency of 20kHz was attempted. In conclusion, by using the results of this study for the pressure surge prediction, we could expect enhancement of braking performance in ABS.

고속전철의 와전류 제동장치 동적 최적화 연구 (An Optimization of Dynamic Elements for Eddy Current Braking System of High Speed Train)

  • 박찬경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.345-350
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for prediction of the dynamic behavior of an eddy current braking system. Five design variables and five performance index are considered for optimization through D-optimal experimental design in this paper. Also model center is used to search the optimal point for sum of performance index with variational matric method.

  • PDF

도시철도용 에너지저장시스템 에너지 절감을 현장시험 (Field Test of Energy Storage System on Urban Transit System)

  • 이한민;김길동;안천헌;김영규;김태석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석 (Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System)

  • 송현우;최정훈;황성호;전광기;최성진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

도시철도차량의 회생제동력 분담 효과 분석 (Analysis of the Regenerative Braking Effect to the Urban Transit Vehicles)

  • 우종혁;이주
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1900-1906
    • /
    • 2016
  • Recent energy efficiency policy of green growth for stable power supply is required. Urban transit vehicles is limited to reduce the use of power without reducing the number of runs. Accordingly, when urban rail vehicles is braking, the occurrence of regenerative power is systemically maximized for the purpose of saving energy. As a result when it is braking, the generated power efficiently is used and looking for a way to reduce the electrical energy. In this paper, the brake control system of the Subway Line 3 is analyzed the effect to meet the required regenerative braking produced electricity through minimizing air braking force of service braking.

다단계 속도제어를 위한 폐색구간 분할에 대한 최적화에 관한 연구 (I) (A Study on Optimization of Block Sectioning for Step Speed Control (I))

  • 이종우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.390-396
    • /
    • 2003
  • This paper is focused on an optimal block sectioning technique which are widely used in conventional railway system. We studied braking distance with pure train braking performance to generalize train braking. We tried to apply the braking distance to wayside signaling system to decide optimal block sectioning to reduce headway. The braking distances are obtained for 2 aspects, 3 aspects, 4 aspects and n aspects such that step speed control, are longer than the pure braking distance. We found an optimal solution with the generalized n aspects, and a minimum block distance for ATO mode.

자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구 (A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles)

  • 백일현
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.

전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구 (The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking)

  • 조수연;서동현;박준성;신외경
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

차량용 탑승자 보호 기술 (Automotive Occupant Protection Technologies)

  • 이성수
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.223-226
    • /
    • 2018
  • 최근 차량 사고로부터 탑승자를 보호하기 위해서 다양한 안전 기술이 집중적으로 개발되고 있다. 본 논문에서는 잠김 방지 브레이크 시스템, 견인력 제어 시스템, 제동력 배분 시스템, 전자 주행 안정 장치, 자동 긴급 브레이크, 에어백, 좌석벨트 프리텐셔너, 능동형 헤드레스트 등 다양한 차량용 탑승자 보호 기술을 살펴보고, 각 기술의 동작원리 및 구현에 대해 설명한다.

Tractor-Semitrailer 차량의 제동특성 프로그램 개발 (A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle)

  • 서명원;박윤기;권성진;양승환;박병철
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF