• 제목/요약/키워드: Braking Simulation

검색결과 271건 처리시간 0.021초

상용 ABS와 성능비교를 통한 슬라이딩 모드 제어기의 제동성능 분석 (Brake Performance Analysis of Sliding Mode Controller by Comparing with a Commercial Anti-lock Brake System)

  • 윤득선;백승환;김흥섭;송정훈;부광석
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.14-23
    • /
    • 2010
  • This paper analyzes braking performance of ABS with Sliding Mode Controller, which is designed in this research and compared with that of a commercial ABS-ECU only. HILS system for this paper has an existing hydraulic brake line with an ECU of commercial passenger vehicle and it is designed to be cooperated with Sliding Mode Controller and hydraulic line. This paper shows the simulation results to meet the target slip ratio on the various road conditions and displays the performance with Sliding Mode Controller has an improvement than a commercial ABS.

연료전지 하이브리드 자동차의 동력전달계의 용량 선정 (Sizing of Powertrain in Fuel Cell Hybrid Vehicles)

  • 정춘화;신창우;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석 (The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance)

  • 이대흥;서호원;정종렬;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.

회생 차량의 전압 상승 한도를 고려한 AT 급전시스템 정태해석 (Static Analysis of AT Feeding Systems considering the Limited Rise of Regenerative Voltage)

  • 김백;문영현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1322-1327
    • /
    • 2004
  • There are some previous studies that utilize constant impedance models or constant current models for electric trains to perform the static analysis of AT feeding systems. These mentioned models have some merits of linear systems but yield erroneous results because of the innate restraints of the models since linear models cannot represent the features of constant power in inverter-driven trains. From these reasons, it is suitable that the train be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However, excessive rise of regenerative voltage during the braking may damage the vehicle itself and the feeding systems so the voltage must be restricted below a certain value. Keeping these facts in minds, we suggest new methods of analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do.

  • PDF

DC/DC 전력 강압 컨버터의 PWM 제어기 방사선 영향 (Radiation Effects on PWM Controller of DC/DC Power Buck Converter)

  • 노영환
    • 한국철도학회논문집
    • /
    • 제15권2호
    • /
    • pp.116-121
    • /
    • 2012
  • DC/DC스위칭 전력 컨버터는 임의의 직류전원을 부하가 요구하는 형태의 직류전원으로 변환시킨다. DC/DC 컨버터는 PWM-IC를 이용하여 주기적으로 입력측에서 출력측으로 전달되는 에너지를 제어하는 기능을 수행하는데, PWM-IC(펄스폭 변조-집적회로), MOSFET(산화물-반도체 전계 효과 트랜지스터), 인덕터, 콘덴서, 저항 등으로 구성되어 있다. 방사선의 영향으로 DC/DC 컨버터의 PWM-IC 를 구성하는 비교기(comparator)와 연산증폭기(OP-Amp.) 등 전자소자의 열화 효과(radiation effects)가 발생되는데, PWM-IC 동작에서 SPICE 시뮬레이션과 실험을 통해 펄스의 상실, 펄스폭의 변화, 그리고 출력파형의 변화를 연구하는데 있다.

궤도차량 변속기 출력 하우징의 구조건전성 평가에 대한 연구 (A Study on the Structural Integrity Assessment of the Output Housing in Transmissions of a Tracked Vehicle)

  • 정재웅;이희원;문태상;권준식
    • 한국군사과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.8-14
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. Particularly, transmission housing is important structure which supports the transmission, and is made of aluminum alloy. Thus, structural robustness against such mechanical loading or vibration must be attained. Structural reliability evaluation through FEM analysis can save time and cost of the actual tests. In this study, structural evaluation is conducted on output housing of transmission, which is core component of tracked vehicle, using the simulation program. In addition, transmission dynamo test is performed to evaluate structural robustness of the output housing against the vibration which can be produced during the transmission operation.

도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구 (A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power)

  • 한성우;김성안;조윤현;변기식
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

현행 ATO 시스템 전동차 운행패턴의 문제점 분석을 통한 ECO 운행패턴 도출방안 연구 (ECO Driving Patterns Derived from the Analysis of the Problems of the Current Driving Pattern of Electric Multiple Unit in ATO System)

  • 김규중;이근오;김주용
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.23-28
    • /
    • 2013
  • This study focuses on finding ways to derive train's optimal ECO driving pattern, which can improve the ride quality and reduce driving energy consumption with keeping the time interval between the stations. As research method, we compared difference of currently operating train's ATO and MCS driving patterns, and concentrated upon the things need to consider in simulation in order to improve the existing pattern of ATO driving pattern's issues with securing the train operation safety. Determining driving pattern minimizing energy consumption by controlling powering within speed limit and controlling switching to coasting at appropriate point considering the track conditions for each section, and determining braking control starting time considering ride comfort and precise stopping is considered to be most important.

전동열차 운행에너지를 최소화 하는 운전모드 결정 (A Study on the Selection of Train Operation Mode Minimizing the Running Energy Consumption)

  • 김용현;김동환;김치태
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.38-48
    • /
    • 2007
  • this paper analyses how much acceleration and deceleration of urban rail vehicle should be applied and how to choose an operation mode to minimize energy consumption when train runs between stations within the fixed operation time. The decided operation pattern satisfying the minimum energy consumption becomes a target trajectory and a basis for the controller design criteria. To make this goal it grasps the characteristics of urban rail vehicle, realize operation energy model of urban rail vehicle and verity the accuracy of embodied model the Matlab simulation with the same operation result of real route. It searches for operation pattern to minimize operation energy by changing the acceleration and deceleration on the imaginative route and proposes operation pattern minimizing energy consumption by applying real operation data between stations of Seoul Metropolitan Subway Line 6.

안전운전 관리시스템 개발 (Development of a Safe Driving Management System)

  • 조준희;이운성
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.71-77
    • /
    • 2007
  • Dangerous driving is a major cause of traffic accidents in Korea. It becomes more serious for commercial vehicles due to higher fatality rates. The Safe Driving Management System (SDMS), developed in this research, is a comprehensive solution that monitors and stores driving conditions of vehicles, detects dangerous driving situations, and analyzes the results in real time. The Safe Driving Management System consists of a vehicle movement information controller, a dangerous driving detection algorithm and a vehicle movement data report and analysis program. The dangerous driving detection algorithm detects and classifies dangerous driving conditions into representative cases such as sudden acceleration, sudden braking, sudden lane change, and sudden turning. Both computer simulation and vehicle test have been conducted to develop and verify the algorithm. The Safe Driving Management System has been implemented on commercial buses to verify its reliability and objectivity. It is expected that the system can contribute to prevention of traffic accidents, systemization of safe driving management and reduction of commercial vehicle operation costs.