• 제목/요약/키워드: Braking Simulation

검색결과 271건 처리시간 0.02초

제동시의 철도차량을 위한 동적모델 (Dynamic Modeling of a Railway Vehicle under Braking)

  • 박준혁;구병춘
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.431-437
    • /
    • 2007
  • This paper describes the dynamic modeling of a railway vehicle when it is under braking force. It is important for the enhancement of braking performance to establish a proper dynamic model of a railway vehicle because the braking performance is affected by some dynamic forces generated by a railway vehicle when it undergoes braking. In this paper, a dynamic model for one vehicle is suggested to compute the dynamic behavior of a railway vehicle in the HILS(Hardware In-the-loop Simulation) system for the railway vehicle braking devices. To simplify the dynamic model, friction between a wheel and a rail is assumed that there exist only the static and the dynamic friction forces. Static friction coefficient is also assumed to be a function of the running speed. Some simulations are carried out with various braking forces, and the braking characteristics according to the change of the braking force are discussed. This study can provide some fundamental results to construct the HILS system for braking devices of a railway vehicle.

회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발 (Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles)

  • 여훈;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발 (A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles)

  • 서명원;박윤기;권성진
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

전기자동차용 제동 시스템 해석 및 최적화에 관한 연구 (The Analysis and Optimization far the Braking System in Electric Vehicle)

  • 오재응;이준일;이충휘;조용구;이유엽;이정윤
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.172-178
    • /
    • 2003
  • Driving range is one of the main problems in development of Electric Vehicles(EV). The Regenerative. braking system is required to overcome the problem, which converts kinetic energy of the vehicle during braking into electrical energy. This paper discusses the braking system of EV and Robust design especially developed to maximize energy recovery and to optimize braking performance. This is promised to be applied to the design of elements for EV braking system.

전기자동차의 회생제동에 따른 배터리 SOC 추정방법에 대한 연구 (A Study on Battery SOC Estimation by Regenerative Braking in Electric Vehicles)

  • 정춘화;박영일;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.119-123
    • /
    • 2012
  • In traditional vehicles, a great amount of energy is dissipated by braking. In electric vehicles (EVs), however, electric motors can be controlled to operate as generators to convert kinetic and potential energy of vehicles into electrical energy and store it in batteries. In this paper, the relationship between regenerative braking factor and battery final SOC is derived and the final SOC from the relationship is compared to that from simulation. Two types of braking algorithms are introduced and applied to an EV, and the final SOC derived from simulation is compared to that derived from the relationship.

4WD HEV의 회생제동 제어로직 개발 (Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle)

  • 여훈;김동현;김달철;김철수;황성호;김현수
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Dynamometer 시험을 통한 ABS 효율 계산 (Braking Efficiency Calculation of Antiskid Brake System of a Fixed-Wing Aircraft)

  • 이기창;전정우;황돈하;김용주;구대현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.222-224
    • /
    • 2005
  • In the development of Antiskid Brake System(ABS) for a fixed-wing aircraft, the braking efficiency is the most essential parameters to evaluate the ABS, especially in slippery road conditions. The braking distance and landing distance of the aircraft depends on it. Since the ABS has been designed and implemented as a subsystem of the aircrafts, the braking performance was evaluated under dynamometer test, where the dynamometer emulates the aircraft mass. Under simulated wet road conditions, the dynamometer starts to be braked. This paper suggests practical braking efficiency calculation methods and the results and finally compares each method.

  • PDF

전기자동차 회생제동에 관한 연구 (A Study on Regenerative Braking of Electric Vehicle)

  • 전범진;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.290-292
    • /
    • 1995
  • In this paper, the regenerative braking control system for 4 WD Electric Vehicle (EV) is proposed. Many studies on efficient drive of EV are being done to prolong the one charge distance. By using the regenerative braking (REGEN), the resulting EV system has following advantages : a) battery is recharged with the mechanical energy of EV, b) the running load can be reduced, and consequently the efficiency can be increased. The problem of REGEN that the power acceptance ability of battery is limited can be solved by controlling regenerative braking torque. The proposed control system has following characteristics. : a) It controls regenerative power by varying mechanical braking torque. b) It controls mechanical braking torque using load torque observer. c) It controls the regenerative braking torque independently. The control scheme and simulation results are presented for the experimental car.

  • PDF

압력커플링 정유압 변속기를 이용한 에너지 절감 유압시스템에 관한 연구 (A Study of Energy Saving Hydraulic System by A Pressure Coupling Hydrostatic Transmission)

  • 도황팅;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권1호
    • /
    • pp.10-17
    • /
    • 2012
  • Nowadays, the demand of energy saving is increasing more and more while the natural resources have been exhausted. Besides, the emission gas caused by vehicles has been being a serious environment problem. Therefore, many studies have been carried out, especially focusing on braking energy regeneration, in order to save energy as well as reduce emission of mobile vehicles. In this paper, we propose a closed-loop hydrostatic transmission for braking energy regeneration with two configurations to reduce the energy consumption by recovering the braking energy. The effectiveness of the proposed system was verified by simulation. The simulation results indicated that the pressure coupling configuration gave better performance in comparison to flow coupling configuration about 40.8%, 61.7% and 53.8% reduction of fuel consumption in 10 mode, 10 mode modified profile and highway schedules, respectively.

회생 제동을 사용하는 전기자동차 시스템 구성 설계 (Full Electric Vehicle Power System simulation with regenerative braking)

  • 진영근;김의정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.365-368
    • /
    • 2010
  • 순수 전기에너지로 움직이는 전기자동차는 저장에너지 시공간의 한계로 인하여 회생제동은 필수적이다. 본 연구에서는 전기자동차의 시스템 설계의 중요한 부분인 축전지 용량 크기와 수명에 영향을 미칠수 있는 회생 제동에 의한 에너지 효율 및 회생제동 순간 에너지 저장을 위한 울트라 캐패시터의 사이징에 대한 상관관계를 분석하여 효율적인 전기 자동차의 시스템 설계에 활용하고자 한다. 미국의 도심주행 코스를 대상으로 시뮬레이션을 수행하여 축전지 사이징과 회생제동의 효율, 울트라 캐패시터의 사이징에 대한 효율 관계를 제시하였다.

  • PDF